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a b s t r a c t

A general class of fair dynamic valuations, which are model-consistent (mark-to-model), market-
consistent (mark-to-market) and time-consistent, was introduced by Barigou et al. (2019) in a
multi-period setting. In this paper, we generalize the convex hedging approach proposed in Dhaene
et al. (2017) to a multi-period framework and investigate the realization of fair dynamic valuations via
a convex hedge-based (CHB) approach. We show that the classes of fair dynamic valuations and CHB
dynamic valuations are equivalent. Moreover, we show how to implement the CHB dynamic valuations
based on two specific classes of convex hedging techniques, i.e. the quadratic and exponential convex
hedging.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Recent solvency regulations for the insurance industry, such as
he Swiss Solvency Test and Solvency II, have required insurance
ompanies to apply a fair valuation of liabilities. To consider and
e consistent with the information provided by financial markets,
ny replicable (hedgeable) part of a claim must be valuated at the
rice of its replicating (hedging) portfolio. The remaining part is
hen valuated by an appropriate risk margin (e.g., based on cost-
f-capital arguments). As the hedgeable part of a claim is usually
ot uniquely determined, different feasible hedging or valuation
pproaches are possible.
Barigou et al. (2019) proposed the fair dynamic valuation

pproach in a multi-period setting, which is model-consistent
mark-to-model for claims independent of financial market evo-
utions), market-consistent (mark-to-market for hedgeable parts
f claims) and time-consistent. This approach is implemented
hrough a backward iteration scheme of hedge-based valuations,
nd thus it largely relies on the adopted hedging technique.
In this study, we investigate the fair dynamic valuation of in-

urance liabilities using the convex hedging approach in a multi-
eriod setting. Our study makes three major contributions to

∗ Corresponding author at: School of Finance, Renmin University of China,
eijing 100872, China.

E-mail addresses: zechen@ruc.edu.cn (Z. Chen),
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the body of research on this topic. First, we extend the frame-
work of fair dynamic valuation by linking the concept of conven-
tional actuarial and financial valuation to the model- and market-
consistency. This integration makes the fair dynamic valuation
framework become full-fledged.

Second, we build a theory of convex dynamic valuation by
extending the single-period convex hedging technique proposed
by Dhaene et al. (2017) and the fair dynamic valuation framework
of Barigou et al. (2019). We propose convex hedge-based (CHB)
dynamic valuation based on convex hedging. The convex hedging
technique determines the hedging strategy such that the claim
and value of hedging portfolio are ‘close to each other’ within
the goal of minimizing the P-expectation of the given convex
function u(x). We prove that the class of CHB dynamic valuation
is equivalent to the class of fair dynamic valuation and can be
characterized in terms of a CHB dynamic hedger.

Last, we illustrate that the proposed CHB dynamic valuation
approach is a practical tool for obtaining fair dynamic valuation of
liabilities. The major advantage of the convex hedging technique
lies in that it transforms the determination of an appropriate
hedging technique into the selection of a proper suitable con-
vex function. The choice of the convex function u(x) determines
ow deviations between the liability and the hedging portfolio
utcome, x, are punished. One particular convex function is the

quadratic function u(x) = x2, in which case the hedging is
the well-known mean–variance (MV) hedging. In this study, we
illustrate some practical classes of convex functions, including
MV and exponential hedging. Furthermore, we apply several CHB
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ynamic valuations to valuate variable annuities, an interesting
xample of a hybrid liability with both financial and actuarial
isk, as an illustration. The numerical results show that our CHB
ynamic valuation is a practical technique.
This study is related to the extensive literature on market-

onsistent, actuarial, and time-consistent valuations. Market-
onsistency requires that the value of any purely hedgeable
art of a financial payoff should be equal to the amount neces-
ary to hedge it, see e.g. Malamud et al. (2008), Tsanakas et al.
2013), Wüthrich et al. (2013), Pelsser and Stadje (2014), Delong
t al. (2019a,b) and Dhaene et al. (2017). An actuarial valuation
s typically based on the real-world measure P, and it involves
subjective actuarial judgment on the choice of the model.1
oreover, time-consistency binds valuations at different time
oints in a consistent way along a time-horizon. Time-consistent
aluations have been largely studied and we refer to Acciaio and
enner (2011) for an overview.
The remainder of this paper is structured as follows. In

ection 2, we define the general framework of fair dynamic
aluation. In Section 3, we introduce the equivalence between
he classes of fair dynamic valuations and the CHB dynamic
aluations. In Section 4, we present some practical examples
f convex dynamic hedging: mean–variance and exponential
edging. Section 5 concludes the paper.

. General framework of fair dynamic valuation

In this section, we revisit the general framework of fair dy-
amic valuation introduced in Barigou et al. (2019). Though the
elated concepts are well developed and investigated, this section
ontributes by enriching the fair dynamic valuation framework.
fter introducing the combined financial–actuarial setting in Sec-
ion 2.1 and basic concepts in Section 2.2, we supplement the con-
ept of actuarial and financial t-valuation, and further integrate
hem into the fair dynamic valuation framework in Section 2.3.
inally, the fair dynamic valuations and hedgers are revisited in
ection 2.4.

.1. Combined financial–actuarial setting

Following Barigou et al. (2019), we consider a setting consist-
ng of financial and actuarial risks, modeled by the probability
pace (Ω, G,P), where P is the physical probability measure. We
consider a discrete time setting with the set of time points given
by η = {0, 1, . . . , T }, with the current time being 0 and the
maturity of liability being T . The finite and discrete time filtration
is G = {Gt}t∈η , where σ -algebra Gt , t ∈ η, represents the general
information available up to and including time t .2

We assume that there are n + 1 non-dividend assets traded
in a liquid, transparent and arbitrage-free financial market.3
We describe the price processes of the traded assets by the
(n + 1)-dimensional stochastic process Y = {Y (t)}t∈η . The vec-
tor Y (t), t ∈ η, represents the time−t prices of all tradable
assets, that is, Y (t) =

(
Y (0)(t), Y (1)(t), . . . , Y (n)(t)

)
. The price

process Y is adapted to the filtration G, which means that Y (t) is

1 See e.g. Kaas et al. (2008) for non-life insurance and Norberg (2014) for life
nsurance.
2 All the random variables (r.v.s) and stochastic processes are defined on

his filtered probability space and the equality between r.v.s is understood in
he P−almost sure sense. Furthermore, we assume that the second moments of
all r.v.s exist under P.
3 For a detailed mathematical introduction, see Dhaene et al. (2017)

and Barigou and Dhaene (2019), Barigou et al. (2019).
2

Gt-measurable, for any t = 0, 1, . . . , T .4 In particular, the asset 0
is a zero-coupon bond paying an amount of 1 at maturity T . Its
price at time t , denoted by B(t, T ), is given by

(0)(t) = B(t, T ) = EQ
t

[
e−

∫ T
t rsds

]
, for any t = 0, 1, . . . , T − 1.

We will call the insurance liabilities due at time t as t-
laims, which are Gt-measurable r.v.s.5 Furthermore, the set of all
-claims defined on (Ω,G, G) is denoted by Ct . In this paper, we
consider pricing T -claims, i.e. insurance liabilities due at time T .
Hereafter, a T -claim is generally denoted by S(T ), or simply S if
no confusion would arise.

2.2. Basic concepts

First, we introduce the concept of trading strategy. A time−t
trading strategy (also called a time−t dynamic portfolio), t ∈

{0, . . . , T − 1}, is an (n + 1)-dimensional predictable process θt =

{θt (τ )}τ∈{t+1,...,T } with respect to the filtration G. Its predictability
requirement means that

θt (τ ) is Gτ−1 − measurable, for any τ = t + 1, . . . , T .

We introduce the notations θt (τ ) =

(
θ
(0)
t (τ ), θ (1)

t (τ ) . . . , θ (n)
t (τ )

)
or the components of θt (τ ), the quantity θ

(i)
t (τ ) is the number of

nits invested in asset i in time period τ , specifically in the time
nterval (τ − 1, τ ].6

A time−τ trading strategy θt (τ ) is only set up at time τ till
+ 1, and then the portfolio is rebalanced to implement θt (τ +

). The Gτ−1-measurability requirement means that the portfolio
omposition θt (τ ) for the time period τ follows from the general
nformation available up to and including time τ − 1. A time−t
rading strategy θt is said to be self-financing if

θt (τ )·Y (τ ) = θt (τ+1)·Y (τ ), for any τ = t+1, . . . , T−1. (1)

That is, no capital is injected or withdrawn at any rebalancing
moment τ = t + 1, . . . , T − 1. The set of self-financing time−t
trading strategies is Θt . Taking into account (1), the time−T value
of any self-financing time−t strategy θt ∈ Θt can be expressed
as

θt (T ) · Y (T ) = θt (t + 1) · Y (t) +

T∑
τ=t+1

θt (τ ) · ∆Y (τ ) , (2)

with ∆Y (τ ) = Y (τ ) − Y (τ − 1). In this formula, θt (τ ) · ∆Y (τ )
is the change in the market value of the investment portfolio in
the time period τ , i.e. between time τ −1 (just after rebalancing)
and time τ (just before rebalancing).

A simple example of a self-financing time−t trading strategy
is the static trading strategy βt consisting of buying at time t
one unit of the zero-coupon bond B(t, T ), which pays 1 at T , and
holding it until maturity T . Another special self-financing time−t
trading strategy 0t corresponds to a null investment, i.e. 0t (τ ) =

(0, 0, . . . , 0) for all τ = t + 1, . . . , T .

4 The filtration G may simply coincide with the filtration generated by the
rice process Y . However, we consider a more general setting, where G is not
nly related to the price history of traded assets, but may also contain additional
nformation such as that related to non-tradable claims or the survival index of
particular population.
5 Barigou et al. (2019) provided a discussion and examples on the
easurability of insurance liabilities with incoming information over time.
6 The investment stays constant during the time interval (τ − 1, τ ] until its

next rebalancing at time u. We refer to Barigou et al. (2019) for more detailed
introduction of strategy rebalancing setting. Here, the Gτ−1-measurability re-
quirement means that the portfolio composition θt (τ ) for the time period τ

follows from the general information available up to and including time τ − 1.
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Table 1
t-valuations and t-hedgers, t = 0, 1, 2, . . . , T − 1.

t-valuation ρt t-hedger θt

Definition Mapping ρt : CT → Ct is a
t-valuation if it is normalized and
translation invariant.

Mapping θt : CT → Θt is a
t-hedger if it is normalized
and translation invariant.

Normalization ρt [0] = 0. θt,0 = 0t .

Translation invariance ρt [S + a] =

ρt [S] + B(t, T )a, for any S ∈

CT and a ∈ Ct payable at T .

θt,S+a = θt,S + aβt , for any S ∈

CT and a ∈ Ct payable at T .
c
(
i

e

In addition, we revisit two important building blocks of fair
ynamic valuation, t-valuation and t-hedger. A t-valuation ρt

(t-hedger θt ) assigns to each T -claim a Gt-measurable random
variable ρt [S] (a self-financing time−t trading strategy θt,S ∈ Θt )
that represents the value (hedging strategy) of the T -claim S at
time t , given the available information at time t . The value ρt [S]
is a t-claim, which is a deterministic value (random variable) at
(before) time t , and θt,S is called a t-hedge for S with a value
θt,S(t) · Y (t) at time t .

Table 1 summarizes the definitions of t-valuation and
t-hedger.

Now, we revisit the notions of dynamic valuation and dynamic
hedger introduced in Barigou et al. (2019).

Definition 1 (Dynamic Valuation). A dynamic valuation is a se-
quence (ρt )T−1

t=0 where for each t = 0, 1, . . . , T − 1, ρt is a
t-valuation.

Definition 2 (Dynamic Hedger). A dynamic hedger is a sequence
(θt )T−1

t=0 where for each t = 0, 1, . . . , T − 1, θt is a t-hedger.

2.3. Fair t-valuations

In this section, we enrich the fair dynamic valuation approach
by integrating the long-standing actuarial and financial valua-
tion principle into the framework of fair t-valuation. The ap-
proaches used to valuate contingent claims under in the insur-
ance and finance contexts are different. The conventional way of
setting insurance premium consists of expected loss built on the
Law of Large Numbers and some necessary loadings, see for in-
stance Gerber (1979), Bowers (1986), and Bühlmann et al. (1996).
In this sense, the conventional insurance premium is under the
physical measure P. However, the core of valuation in the finance
context is no-arbitrage. This widely acknowledged principle of
financial valuation implies that claims should be valuated under
a risk-neutral equivalent martingale measure (EMM) Q. In the
following, we denote the expectation conditional on Gt by EP

t and
EQ
t , respectively.
First, we define the class of actuarial t-valuation, which gener-

alizes insurance premium principles in the traditional insurance
context.

Definition 3 (Actuarial t-valuation). An actuarial t-valuationAt [S]
is a t-valuation ρt : CT → Ct , such that

At [S] = B(t, T ) · (EP
t [S] + RMt [S]), for any S ∈ CT , (3)

where the mapping RMt : CT → Ct is P-law invariant and
P-independent of time−t and future asset prices Yt =

{Y (τ )}τ∈{t,...,T }.

The mark-to-model condition (3) requires that the mechanism
of actuarial t-valuation should be independent of the information
from the financial market since time t under the P measure.

It is a generalization of various insurance methods in practice, 2

3

e.g. the variance principle and the standard deviation principle.7
One particular example of actuarial t-valuation is the standard
deviation principle,

At [S] = B(t, T ) ·
(
EP
t [S] + ασ P

t [S]
)
,

with σ P
t [S] :=

√
VarP [S | Gt ] and α > 0.

Second, let us step from the actuarial valuation method to
the financial valuation method, and introduce the financial t-
valuation. Its financial valuation condition (4) shows that claims
should be valuated under a risk-neutral EMM Q.

Definition 4 (Financial t-valuation). A financial t-valuation
Ft [S] is a t-valuation ρt : CT → Ct , such that

Ft [S] = B(t, T ) · EQ
t [S] , for any S ∈ CT , (4)

where Q is an EMM.

At time t , based on the extent to which insurance claims
can be hedged by tradable assets, Barigou et al. (2019) de-
fine two special types of T -claims: t-orthogonal T -claims and
t-hedgeable T -claims (see Table 2). Hereafter, we denote the
set of all t-orthogonal T -claims by Ot

T , and the set of all time-
t hedgeable T -claims by Ht

T . It is intuitive that the suitable
t-valuations applied to the class of t-orthogonal T -claim S⊥ and
t-hedgeable T -claim Sh should be actuarial t-valuation and finan-
cial t-valuation, respectively. T -claims are often neither
t-orthogonal nor t-hedgeable, but are correlated with the market
price of tradable assets. This most common type of T -claim,
t-hybrid T -claim, is partially hedgeable by tradable assets.

Some recent regulations, such as the Swiss Solvency Test and
Solvency II, have realized the importance of the financial risk
embedded in hybrid insurance claims and adopted the so-called
market-consistent valuation. Dhaene et al. (2017) and Barigou
et al. (2019) proposed fair t-valuation, which merges both
model-consistency and market-consistency (see Fig. 1). Model-
consistency is a property of t-valuation concerning valuating
orthogonal claims.8 Model-consistent t-valuation ‘identifies’ the
orthogonal claims, and applies actuarial t-valuation, which is
completely ‘independent’ of the financial market. In addition,
market-consistency ‘identifies’ the hedgeable parts of any claims,
stating that the valuation of any hedgeable parts should be
based on the market price.9 Market-consistent t-valuation is
‘independent’ of actuarial models, but depends on the informa-
tion of financial market. Table 3 summarizes the mathemati-
cal definitions of model-consistent, market-consistent and fair
t-valuations. Therefore, we can see that the fair t-valuation ap-
proach meets all the requirements in Table 2.

7 See e.g. Bowers (1986), Kaas et al. (2008) and Norberg (2014).
8 To avoid concept misunderstandings, we remark that the model-consistent

ondition in our paper is introduced as ‘actuarial condition’ in Barigou et al.
2019). Thus, the actuarial t-valuation by (3) in our paper is a subclass of that
n Barigou et al. (2019).
9 Some identical or similar conditions can be found in the literature (Kupper
t al., 2008; Malamud et al., 2008; Artzner and Eisele, 2010; Pelsser and Stadje,
014).



Z. Chen, B. Chen, J. Dhaene et al. Insurance: Mathematics and Economics 98 (2021) 1–13

v
l
m

Table 2
T -claims: types and proper t-valuations, t = 0, 1, 2, . . . , T − 1.

Definition Proper t-valuation

t-orthogonal T -claim S⊥ A T -claim which is P-independent of
the stochastic process
Yt+1 = {Y (τ )}τ∈{t+1,...,T } . Notation:
S⊥

⊥ Yt+1 .

Actuarial t-valuation.

t-hedgeable T -claim Sh A T -claim which can be replicated by
a time−t self-financing strategy
θt ∈ Θt : Sh = θt (T ) · Y (T ).

Financial t- valuation.

t-hybrid T -claim A T -claim which is neither
t-hedgeable nor t-orthogonal.

Fair t-valuation.
Table 3
Model-consistent, market-consistent and fair t-valuations and t-hedgers, t = 0, 1, 2, . . . , T − 1.

t-valuation ρt t-hedger θt

Model-consistency ρt is a model-consistent t-valuation if
there exists an actuarial t-valuation
At such that ρt

[
S⊥

]
=

At
[
S⊥

]
, for any S⊥

∈ Ot
T .

θt is a model-consistent
t-hedger if there exists a
model-consistent t-valuation ρt

such that θt,S⊥ =
ρt [S⊥]
B(t,T ) βt ,

for any S⊥
∈ Ot

T .

Market-consistency ρt is a market-consistent t-valuation if
ρt

[
S + Sh

]
= ρt [S] + EQ

t

[
e−

∫ T
t rsdsSh

]
,

for any S ∈ CT and Sh ∈ Ht
T .

θt is a market-consistent
t-hedger if θt,S+Sh = θt,S + θt,Sh ,
for any S ∈ CT and Sh ∈ Ht

T .

Fairness ρt is a fair t-valuation if it is both
model- and market-consistent.

θt is a fair t-hedger if it is both
model- and market-consistent.
Fig. 1. Classes of t-valuation and dynamic valuation.
Though the approach of fair t- and dynamic valuation is de-
eloped, we contribute a missing piece to the framework: the
ink between conventional actuarial (financial) t-valuation and
odel-consistent (market-consistent) t-valuation. As shown in

Fig. 1, the classes of actuarial and financial t-valuations are exclu-
sive to each other. The two important subclasses of t-valuations,
model-consistent and market-consistent t-valuations, extend the
classes of actuarial and financial t-valuations into broader ones,
respectively. In this sense, actuarial and financial t-valuations
are particular types of model-consistent and market-consistent
t-valuations. We revisit the classes of model-consistent, market-
consistent and fair t-hedgers in Table 3.

2.4. Fair dynamic valuations

In this section, we revisit the concept and conclusion of fair
dynamic valuation in Barigou et al. (2019), which incorporates
time-consistency. Time-consistency is a concept that couples dif-
ferent static t- valuations, which means that the same time−t
value is assigned to a T -claim regardless of whether it is calcu-
lated in one step or two steps backward in time. The definition
4

of time-consistent valuation in Table 4 is often named the ‘re-
cursiveness’ or ‘tower property’ definition.10 The definition of
time-consistent dynamic hedger is introduced similarly on the
basis of time-consistent dynamic valuation.

First, we introduce an equation that appears in the definition
of time-consistent valuation and is often used in the remainder
of the paper. For a t-valuation for T -claims S, consider a trading
strategy that invests ρt [S] at time t in the zero-coupon bond
B(t, T ), for t = 0, 1, . . . , T − 1. Obviously, the initial investment
at time t of this trading strategy is ρt [S], and its time−T value ρ̃t
satisfies that

ρ̃t [S] =
ρt [S]
B(t, T )

. (5)

10 See e.g. Cheridito and Kupper (2011), Acciaio and Penner (2011) and Föllmer
and Schied (2011) for the discrete time case, and see Frittelli and Gianin (2004),
Delbaen et al. (2010), Pelsser and Stadje (2014) and Feinstein and Rudloff (2015)
for the continuous case. In addition, there are some weaker notions of time-
consistency in the literature, see e.g. Roorda et al. (2005) and Kriele and Wolf
(2014).
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Table 4
Model-consistent, market-consistent, time-consistent and fair dynamic valuations and hedgers.

Dynamic valuation (ρt )T−1
t=0 Dynamic hedger (θt )T−1

t=0

Model-consistency (ρt )T−1
t=0 is a model-consistent dynamic

valuation if any ρt is a
model-consistent t-valuation.

(θt )T−1
t=0 is a model-consistent

dynamic hedger if any θt is a
model-consistent t-hedger.

Market-consistency (ρt )T−1
t=0 is a market-consistent dynamic

valuation if any ρt is a
market-consistent t-valuation.

(θt )T−1
t=0 is a market-consistent

dynamic hedger if any θt is a
market-consistent t-hedger.

Time-consistency (ρt )T−1
t=0 is a time-consistent dynamic

valuation if ρ0, ρ1, . . . , ρT−1 are
connected in the following way:
ρt [S] = ρt [̃ρt+1 [S]] , for any
S ∈ CT and t = 0, 1, . . . , T − 2.

(θt )T−1
t=0 is a time-consistent

dynamic hedger if
θ0, θ1, . . . , θT−1 are connected
in the following way:
θt,S = θt ,̃ρt+1[S], for any
S ∈ CT and t = 0, 1, . . . , T − 2.

Fairness (ρt )T−1
t=0 is a fair dynamic valuation if

it is model-, market- and
time-consistent.

(θt )T−1
t=0 is a fair dynamic hedger

if it is model-, market- and
time-consistent.
θ

θ

w
(

E

T
J
a

E

T

E

w
a

ρ

w(
θ

The time−T value of the t-valuation ρt [S] works to compare
-valuations at different times.

Fig. 1 shows that fair dynamic valuation (hedger) merges
he properties of model-consistent, market-consistent and time-
onsistent valuations (hedgers). Model-consistent and market-
onsistent dynamic valuations (hedgers) are natural general-
zations of model-consistent and market-consistent t-valuations
(hedgers). Similarly, model-consistent and market-consistent dy-
namic hedgers are also natural generalizations of those of
t-hedgers.

Merging the notions of model-consistent, market-consistent
and time-consistent dynamic properties leads to the concept of
fair dynamic valuation (hedger). Table 4 summarizes some of the
important properties of fair dynamic valuations and hedgers.

3. Fair dynamic valuation via convex hedging

Barigou et al. (2019) proved that a dynamic valuation (ρt )T−1
t=0

is fair if and only if there exists a fair dynamic hedger (µt )
T−1
t=0

such that

ρt [S] = µt,S(t + 1) · Y (t), for any S ∈ CT .

In this section, we propose a general convex hedge-based (CHB)
dynamic valuation approach. We prove that the class of CHB
valuations is equivalent to the class of fair dynamic valuations.

3.1. Convex t-hedger and valuation

To begin with, we extend the convex hedger of Dhaene et al.
(2017) under a single-period framework to our multi-period set-
ting.

Definition 5 (Convex t-hedger). Consider a strictly convex non-
negative function u with u(0) = 0. The t-hedger θu

t determined
via

θu
t,S = arg min

µt∈Θt
EP
t

[
u
(
µt (T ) · Y (T ) − S

)]
, for any S ∈ CT ,

(6)

is called a convex t-hedger (with convex function u).

As we assume that the time−T value of any time−t trading
strategy is square-integrable, a solution to the optimization prob-
lem (6) exists, see for instance Černỳ and Kallsen (2009). The
convex t-hedger attaches the hedge θu

t,S to any claim S, such that
the time−T value of the claim and hedging portfolio are ‘close to
each other’ in the sense that the P-expectation of the u-value of
5

their difference is minimized. The choice of the convex function
u determines how severe deviations are punished.

In the following theorem, we show that any convex t-hedger
is a fair t-hedger.

Theorem 1. Convex t-hedger θu
t is a fair t-hedger with the under-

lying model-consistent t-valuation ρu
t

[
S⊥

]
given by

ρu
t

[
S⊥

]
= B(t, T ) ·[EP

t (S
⊥)+argmin

s∈R
EP
t

[
u
(
s − EP(S⊥) − S⊥

)]
],

(7)

for any S⊥
∈ OT .

Proof. Consider the t-hedger θu
t defined in (6). We have to prove

that θu
t satisfies the market- and model-consistent conditions in

the definition of a fair t-hedge.
(a) For any t-hedgeable claim Sh ∈ Ht

T , which can be replicated
by a time−t self-financing strategy θt ∈ Θt such that Sh =

t,Sh · Y (T ), we have that
u
t,S+Sh = arg min

µt∈Θt
EP
t

[
u
((

µt (T ) − θt,Sh (T )
)
· Y (T ) − S

)]
= θt,Sh + arg min

µ′
t∈Θt

EP
t

[
u
(
µ′

t (T ) · Y (T ) − S
)]

= θt,Sh + θu
t,S,

hich means that the market-consistency condition is satisfied.
b) Consider any t-orthogonal T -claim S⊥

∈ Ot
T . Notice that

P
t (S

⊥)+argmin
s∈R

EP
t

[
u
(
s − EP(S⊥) − S⊥

)]
= argmin

s∈R
EP
t

[
u
(
s − S⊥

)]
.

aking into account the independence of S⊥ and Y as well as
ensen’s inequality, we find that for any trading strategy µ ∈ Θ ,
convex function u(x) satisfies
P
t

[
u
(
µt (T ) · Y (T ) − S⊥

)
| S⊥

]
≥ u

(
µt (T ) · EP

t [Y (T )] − S⊥
)
.

aking expectations on both sides leads to
P
t

[
u
(
µt (T ) · Y (T ) − S⊥

)]
≥ EP

t

[
u
(
µt (T ) · EP

t [Y (T )] − S⊥
)]

≥ EP
t

[
u
(
ρ̃t

[
S⊥

]
− S⊥

)]
,

hich holds for any µt ∈ Θt . Notice that ρ̃t
[
S⊥

]
can be rewritten

s

t̃ [S] =
(
ρt

[
S⊥

]
, 0, . . . , 0

)
· Y (T ),

ith the relation between ρt
[
S⊥

]
and ρ̃t [S] indicated in (5). As

ρt
[
S⊥

]
, 0, . . . , 0

)
is an element of Θt , we find that

u
⊥ =

ρt
[
S⊥

]
βt . (8)
t,S B(t, T )



Z. Chen, B. Chen, J. Dhaene et al. Insurance: Mathematics and Economics 98 (2021) 1–13

I
f

ρ

T

θ

i
m

D

I

t is easy to verify that ρu
t is a model-consistent valuation satis-

ying
u
t

[
S⊥

]
= B(t, T ) · [EP

t (S
⊥) + argmin

s∈R
EP [

u
(
s − EP

t (S
⊥) − S⊥

)]
],

for any S⊥
∈ OT .

Thus, we can conclude that the model-consistency condition is
also satisfied. ■

Definition 6 (Convex Hedge-Based t-hedger). A t-hedger θt : CT →

Θt defined by

θCHB
t,S = θu

t,S + πt [S − θu
t,S(T ) · Y (T )] βt ,

for any S ∈ CT and t = 0, 1, . . . , T − 2, (9)

with underlying convex t-hedger θu
t and model-consistent

t-valuation πt , is called a convex hedge-based t-hedger (CHB
t-hedger).

A CHB t-hedger θCHB
t is determined by its underlying convex t-

hedger θu
t first, augmented by a model-consistent t-hedger πt ·βt

which invests in the zero-coupon bonds. Due to the fact that the
convex t-hedger θu

t is fair, we find that any CHB t-hedger θCHB
t is

a fair t-hedger.

Corollary 1. Any CHB t-hedger is a fair t-hedger.

Proof. Consider the CHB t-hedger θCHB
t given in (9). In order

to show that θCHB
t is fair, we have to verify whether it is both

market-consistent and model-consistent.
(i) Let S ∈ CT and Sh ∈ Ht

T with θt ∈ Θt such that Sh =

θt,Sh (T ) · Y (T ). We have that

θu
t,S+Sh = θu

t,S + θt,Sh ,

taking into account this additivity relation, we find that

θCHB
t,S+Sh = θu

t,S+Sh + πt [S + Sh − θu
t,S+Sh (T ) · Y (T )] βt

= θu
t,S + θt,Sh + πt [S + Sh − θu

t,S (T ) · Y (T ) − θt,Sh (T ) · Y (T )]βt

= θu
t,S + πt [S − θu

t,S (T ) · Y (T )] βt + θt,Sh

= θCHB
t,S + θt,Sh .

Hence, θCHB
t is market-consistent.

(ii) Let S⊥
∈ OT . From (8), we know that θu

t,S⊥ =
ρt [S⊥]
B(t,T ) βt .

aking into account the translation-invariance of πt leads to
CHB
t,S⊥ = θu

t,S⊥ + πt [S⊥
− θu

t,S⊥ (T ) · Y (T )] βt

=
ρt

[
S⊥

]
B(t, T )

βt + πt [S⊥
−

ρt
[
S⊥

]
B(t, T )

]βt

= πt [S⊥
] βt .

Given that πt is a model-consistent t-valuation, we find that θCHB
t

s model-consistent. Therefore, any CHB t-hedger θCHB
t is both

arket-consistent and model-consistent, and hence, fair. ■

Next, we define convex hedge-based t-valuations.

efinition 7 (Convex Hedge-Based t-valuation). The t-valuation
ρt : CT → Ct , t = 0, 1, . . . , T − 1, defined by

ρt [S] = θu
t,S(t + 1) · Y (t) + πt [S − θu

t,S(T ) · Y (T )], (10)

with underlying convex t-hedger θu
t and model-consistent

t-valuation πt , is called a convex hedge-based t-valuation (CHB
t-valuation).

In the following theorem we show that the classes of fair
t-valuations and CHB t-valuations are equivalent.
6

Theorem 2. A mapping ρt : CT → Ct , t = 0, 1, . . . , T −1, is a CHB
t-valuation if and only if it is a fair t-valuation.

Proof. (a) Consider the CHB t-valuation ρt defined in (10). The
CHB t-valuation ρt can be represented as the time t value of the
following CHB t-hedger θCHB

t ,

ρt [S] = (θu
t,S(t + 1) + πt [S − θu

t,S(T ) · Y (T )]βt ) · Y (t)

= θCHB
t,S (t + 1) · Y (t).

n order to show that ρt is fair, we have to verify whether ρt is
both market-consistent and model-consistent.

(i) Let S ∈ CT and Sh ∈ Ht
T with θt ∈ Θt such that Sh =

θt,Sh (T ) · Y (T ). By Corollary 1, we find that

ρt
[
S + Sh

]
= θCHB

t,S+Sh (t + 1) · Y (t)

= (θCHB
t,S (t + 1) + θt,Sh (t + 1)) · Y (t)

= ρt [S] + θt,Sh (t + 1) · Y (t).

Hence, ρt is market-consistent.
(ii) Let S⊥

∈ OT . By Corollary 1, we know that

ρt
[
S⊥

]
= θCHB

t,S⊥ (t + 1) · Y (t)

= (πt [S⊥
] βt ) · Y (t)

= πt [S⊥
].

Given that πt is a model-consistent t-valuation, we find that ρt is
model-consistent.
(b) Consider a fair t-valuation ρt . Let θu

t,S · Y (T ) be the time−T
value of a t-convex hedge of the T -claim S, e.g. determined via
the underlying quadratic function u(x) = x2. By the market-
consistency property, we immediately find that

ρt [S] = ρt
[
θu
t,S(T ) · Y (T ) +

(
S − θu

t,S(T ) · Y (T )
)]

= θu
t,S(t + 1) · Y (t) + ρt

[
S − θu

t,S(T ) · Y (T )
]
.

Given that ρt is fair, it is also model-consistent. Hence, we can
conclude that the fair t-valuation ρt is a CHB t-valuation.

Thus, for any convex t-hedger θu
t , the CHB t-valuation is

fair. ■

3.2. Convex dynamic hedger and valuation

In the previous section, we introduced the convex t-hedgers
and valuations. In this section, we interpret the time-consistency
property under the framework of convex hedge-based dynamic
hedgers and valuations.

Definition 8 (Convex Hedge-Based Dynamic Hedger). The dynamic
hedger (θt )T−1

t=0 where for each t = 0, 1, . . . , T − 1, θt is a CHB
t-hedger and connected in the following way:

θt,S = θt ,̃ρt+1[S], for any S ∈ CT and t = 0, 1, . . . , T − 2, (11)

with (t+1)-valuation ρt+1 [S] = θt+1,S ·Y (t+1), is called a convex
hedge-based dynamic hedger (CHB dynamic hedger).

After having introduced the concept of CHB dynamic hedger,
we now define convex hedge-based dynamic valuation (CHB dy-
namic valuation).

Definition 9 (Convex Hedge-Based Dynamic Valuation). The dy-
namic valuation (ρt )T−1

t=0 where all ρt are CHB t-valuations and
connected in the following way:

ρt [S] = ρt [̃ρt+1 [S]] , for any S ∈ CT and t = 0, 1, . . . , T − 2,
(12)
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s called a convex hedge-based dynamic valuation (CHB dynamic
aluation).

In the following theorem, we prove that a fair dynamic valu-
tion can be characterized in terms of a CHB dynamic hedger.

heorem 3. A dynamic valuation (ρt )T−1
t=0 is a fair dynamic valua-

tion if and only if there exists a CHB dynamic hedger (µt )
T−1
t=0 such

that

ρt [S] = µt,S(t+1)·Y (t) for any S ∈ CT and t = 0, 1, . . . , T−1.

(13)

Proof. (a) Suppose that (ρt )T−1
t=0 is a fair dynamic valuation. First,

by Theorem 2, we know that fair t-valuation ρT−1 is a CHB
t-valuation. That is, there exist a convex t-hedger θu

T−1 and a
model-consistent t-valuation πT−1 such that

ρT−1 [S] = θuT−1,S (T )·Y (T−1)+πT−1[S−θuT−1,S (T )·Y (T )], for any S ∈ CT .

Second, we construct a dynamic hedger (µt )
T−1
t=0 which is model-

consistent, market-consistent and time-consistent based on con-
vex t-hedger θu

t . Let us set

µT−1,S = θu
T−1,S + πT−1

[
S − θu

T−1,S(T ) · Y (T )
]
βT−1.

Obviously, µT−1 is a fair (T − 1)-hedger and

ρT−1 [S] = µT−1,S(T ) · Y (T − 1), for any S ∈ CT .

Then, by definition the (T − 2)-valuation ρT−2 [S] is

ρT−2 [̃ρT−1 [S]] = θu
T−2,̃ρT−1[S](T − 1) · Y (T − 2)

+ πT−2[S − θu
T−2,̃ρT−1[S](T ) · Y (T )],

= (θu
T−2,S(T − 1)

+ πT−2
[
S − θu

T−2,S(T ) · Y (T )
]
βT−2) · Y (T − 2)

= µT−2,S(T − 1) · Y (T − 2),

where µT−2 is a CHB (T −2)-hedger. Hence, ρT−2 [S] is equivalent
to the (T−2)- value of hedger µT−2. Starting from a CHB t-hedger
µT−1, we construct the time-consistent adaptation

µt,S = µt ,̃ρt+1[S], for any S ∈ CT and t = 0, 1, . . . , T − 2.

Iteratively, we can show this CHB dynamic hedger (µt,S)
T−1
t=0 sat-

isfies ρt [S] = µt,S(t + 1) · Y (t).
(b) Consider the CHB dynamic hedger (µt )

T−1
t=0 defined in (11).

From Theorem 2, we know that for any t = 0, 1, . . . , T − 1, the
CHB t-valuation ρt = θt,S · Y (t) is both model-consistent and
market-consistent, and hence, fair. Moreover, from the fact that
(µt )

T−1
t=0 is time-consistent, we have

ρt [S] = µt,S(t + 1) · Y (t)
= µt ,̃ρt+1[S](t + 1) · Y (t)

= ρt [̃ρt+1 [S]] .

Thus, (ρt )T−1
t=0 is a fair dynamic valuation, which ends the

proof. ■

Theorem 2 shows that the class of fair t-valuations is equiv-
alent to the class of CHB t-valuations. In the following theorem,
we extend this equivalence to dynamic valuations and show that
any fair dynamic valuation can be expressed as a CHB dynamic
valuation.

Theorem 4. A dynamic valuation (ρt )T−1
t=0 is a CHB dynamic valua-

tion if and only if it is a fair dynamic valuation.

Proof. (a) Consider the CHB dynamic valuation (ρt )T−1
t=0 defined
in Eq. (12). From Theorem 2, we know that any CHB t-valuation ρt

7

is both market-consistent and model-consistent. Moreover, from
the definition of CHB dynamic valuation in Eq. (12), (ρt )T−1

t=0 satis-
fies the time-consistent condition. Thus, (ρt )T−1

t=0 is a fair dynamic
valuation.

(b) Consider a fair dynamic valuation (ρt )T−1
t=0 . For t = 0, 1, . . . ,

T − 1, any t-valuation ρt is a fair t-valuation, and hence, a CHB
t-valuation by Theorem 2. Given that (ρt )T−1

t=0 is fair, it is also
time-consistent. That is, all t-valuations involved are connected
as:

ρt [S] = ρt [̃ρt+1 [S]] , for any S ∈ CT and t = 0, 1, . . . , T − 2.

Thus, we can conclude that (ρt )T−1
t=0 is a CHB dynamic

valuation. ■

In Theorem 4 we have proven the equivalence between the
classes of CHB dynamic valuations and fair dynamic valuations.
This result is a generalization of Theorem 3 in Barigou and Dhaene
(2019) as the mean–variance hedging is a special case of convex
hedging. The equivalences provided by Theorems 3 and 4 lead to
the conclusion that a CHB dynamic valuation can be characterized
in terms of a CHB dynamic hedger. That is, any dynamic valuation
(ρt )T−1

t=0 is a CHB dynamic valuation if and only if there exists a
CHB dynamic hedger (µt )

T−1
t=0 such that

ρt [S] = µt,S (t + 1) · Y (t), for any S ∈ CT and t = 0, 1, . . . , T − 1.

To sum up, under the convex hedging approach, determining
the time−t fair value of a T -claim S departs from splitting this
claim into the value of its convex hedge and remaining claim:

S = θu
t,S(T ) · Y (T ) +

(
S − θu

t,S(T ) · Y (T )
)
.

The trading strategy θu
t,S hedges the claim S under a certain con-

vex function optimization goal. The fair t-valuation of S is then
the sum of the financial market price of the hedge θu

t,S and the
model-consistent value of the remaining claim S−θu

t,S(T )·Y (T ). In
the time horizon, the general procedure to determine the fair dy-
namic valuation of a T -claim S via the convex hedging approach
is based on the following backward iterations scheme,11

1. (T − 1)-valuation ρT−1 [S] is determined by combining a
convex hedge portfolio and remaining non-hedged risk
priced via a model-consistent (T − 1)-valuation πT−1.

2. At any time t , the t-valuation ρt [S] is determined itera-
tively by ρt [S] = ρt [̃ρt+1 [S]] , for t = 0, 1, . . . , T − 2,
which requires the convex hedge and model-consistent risk
margin.

4. Convex dynamic hedging: Some practical examples

In this section, we illustrate some practical convex dynamic
hedging techniques. As introduced in Section 3, the convex dy-
namic valuation approach largely relies on the choice of specific
convex function. In Section 4.1, we introduce two applicable
classes of convex functions and corresponding convex hedgers:
mean–variance and exponential convex hedgers. In Section 4.2,
we investigate some properties of loss averse exponential
t-hedger, an applicable hedging technique first proposed in this
work. In Section 4.3, we use these two classes of convex hedgers
to conduct CHB dynamic valuations.

11 The backward iteration scheme for obtaining fair dynamic valuations was
also introduced in Barigou et al. (2019). However, in this paper we specifically
adopt the convex hedging technique.
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.1. Mean–variance and exponential hedging

In this section, we introduce two specific classes of convex
edging: mean–variance (MV) and exponential hedging. The un-
erlying convex function of MV hedging is the quadratic function,
hile that of exponential hedging become exponential functions.
oth types of functions ‘punish’ the closer hedge deviations rel-
tively less than the farther ones, in order to obtain the best
edging.

.1.1. (Loss averse) MV t-hedger
MV hedging is a technique of approximating, with minimal

ean squared error, a given payoff by the final value of a trad-
ng strategy. MV hedging is widely used because of its simplic-
ty and nice properties, see e.g. Thomson (2005) and Dahl and
øller (2006). The minimization function of the MV hedging is

he quadratic function, without differentiating the loss and gain
eviations. The definition of MV t-hedger is as follows:

efinition 10 (Mean–Variance t-hedger). The convex t-hedger
determined via

θMV
t,S = arg min

µt∈Θt
EP
t

[(
µt (T ) · Y (T ) − S

)2]
,

for any S ∈ CT and t = 0, 1, . . . , T − 1,

is called the mean–variance (MV) t-hedger.

We define the deviation between the outcomes of the hedging
portfolio and insurance claim at time T ,

xS = µt (T ) · Y (T ) − S.

Thus, xS is a random variable to be observed at time T . The xS < 0
cases represent losses of insurers, and the opposite xS > 0 cases
indicate gains. Notice that MV t-hedger indifferently punishes the
gains and losses.

Loss aversion is an important concept in decision theory and
prospect theory, referring to that for decision makers a loss of
a certain amount leads to losing more satisfaction than the sat-
isfaction from a gain of the equivalent amount (Kahneman and
Tversky, 1979; Tversky and Kahneman, 1992). Chen et al. (2020)
propose the following definition of loss averse mean–variance
(LAMV) hedging.

Definition 11 (Loss Averse Mean–Variance t-hedger). The convex
t-hedger determined via

θLAMV
t,S = arg min

µt∈Θt
EP
t

[
u
(
µt (T ) · Y (T ) − S

)]
,

for any S ∈ CT and t = 0, 1, . . . , T − 1, with

u(xS) =

{
x2S

λ · x2S
x ⩾ 0
x < 0 , λ > 1, (14)

is called a loss averse mean–variance (LAMV) t-hedger.

The LAMV t-hedger is more sensitive to losses than to gains.
It punishes losses more than gains. The LAMV’s loss aversion
coefficient λ indicates the degree of aversion toward negative
deviations. Chen et al. (2020) investigate the properties of LAMV
hedging and its application in fair dynamic valuation.

4.1.2. (Loss averse) exponential t-hedger
Exponential functions also fall into the category of convex

functions. In this subsection, we define the exponential convex
hedger with an underlying exponential function.
8

Definition 12 (Exponential t-hedger). The convex t-hedger deter-
mined via

θE
t,S = arg min

µt∈Θt
EP
t

[
u
(
µt (T ) · Y (T ) − S

)]
,

for any S ∈ CT and t = 0, 1, . . . , T − 1, with

u(xS) = exp(α|xS |) − 1, for any xS ,

is called an exponential t-hedger.

As |xS | represents the absolute value of a deviation and the
convex function is exponentially increasing, thus a higher α indi-
cates that larger deviations are relatively more severely punished.
Hereafter, we call this effect of α the tails aversion coefficient.

Note that the exponential t-hedger is different from the ex-
ponential hedging technique employed in studies on the expo-
nential utility indifference valuation and hedging strategies, see
for instance Musiela and Zariphopoulou (2004) and Mania et al.
(2005). The major difference lies in that positive and negative
deviations, xS and −xS for xS > 0, are punished equivalently by
the exponential t-hedger though these two approaches punish
all deviations. However, the exponential utility indifference ap-
proach punishes one side relatively less than the other as it favors
gains.

Now, we compare the MV t-hedger with the exponential t-
hedger. Both t-hedgers are symmetric in the sense that positive
and negative deviations, xS and −xS , are punished equivalently if
the absolute values of deviation are equal. However, they differ in
their attitudes toward small and large deviations. Consider c > 0
such that

exp(α|c|) − 1 = c2,

then we know that

exp(α|xS |) − 1 ≤ x2S , for |xS | ≤ c,

exp(α|xS |) − 1 > x2S , for |xS | > c.

This comparison indicates that the exponential t-hedger punishes
large deviations |xS | > c more severely than MV t-hedger. While,
the exponential t-hedger punishes the small deviations |xS | ≤ c
less severely than MV t-hedger. This is because the growth of
exponential functions is much larger that of quadratic ones. For
instance, consider the following deviations: 2xS > xS > 0, we
have

exp(2αxS) − 1
exp(αxS) − 1

≈ exp[αxS] and
(2xS)2

x2S
= 4. (15)

Eq. (15) implies that the growth rate of the exponential
t-hedger’s punishment could be much higher than that of MV
t-hedger’s when the scale of deviation xS is large.

Therefore, hereafter we adopt α, the tails aversion coefficient,
to measure exponential t-hedger’s aversion toward large devia-
tions. Here, we call large deviations, both positive and negative
ones, the tails.

Definition 13 (Loss Averse Exponential t-hedger). The convex t-
hedger determined via

θLAE
t,S = arg min

µt∈Θt
EP
t

[
u
(
µt (T ) · Y (T ) − S

)]
,

for any S ∈ CT and t = 0, 1, . . . , T − 1, with

u(xS) =

{
exp(α|xS |) − 1
exp(γ |xS |) − 1

xS ⩾ 0
xS < 0 , γ ≥ α > 0, (16)

is called a loss-averse exponential (LAE) t-hedger.
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.2. Some properties of LAE t-hedger

Chen et al. (2020) proposed the P-symmetric property for
-hedgers. P-symmetric t-hedger hedges ‘symmetrically’ toward
ny liability S ∈ CT (payout cashflows) and a corresponding asset
S (income cashflows).

efinition 14. A t-hedger θt is P-symmetric if

t,S = −θt,−S, for any claim S ∈ CT .

Chen et al. (2020) also showed that LAMV t-hedger is
-symmetric if and only if λ = 1. Since γ ≥ α > 0, we define
he LAE’s loss aversion as λE =

γ

α
. λE represents the degree that

oss (xS < 0) deviations are relatively more severely punished
han gains (xS ⩾ 0). The following proposition proves that the
AE t-hedger θLAE

t is P-symmetric if and only if λE = 1.

Proposition 1. The LAE t-hedger θLAE
t is P-symmetric if and only

f λE = 1.

Proof. For any S ∈ CT , the first order conditions for LAE t-hedger
to minimize EP

t [u (S − µ · Y (T ))] are

EP
t { exp[α(µ(T ) · Y (T ) − S)] · αI{µ(T )·Y (T )≥S}

− exp[γ (S − µ(T ) · Y (T ))] · γ I{µ(T )·Y (T )<S}} · Y (i)(T ) = 0,

for i = 0, 1, . . . , n. As the asset 0 is risk-free with Y (0)(T ) = 1, we
have

EP
t [exp(α|xS |) · αI{xS≥0} − exp(γ |xS |) · γ I{xS<0}] = 0. (17)

(1) On the one hand, when λE = 1, namely α = γ , Eq. (17)
becomes

EP
t [exp(α|xS |) · αI{xS≥0} − exp(α|xS |) · αI{xS<0}] = 0. (18)

where xS = θLAE
t,S ·Y (T )− S. Denote x−S = θLAE

t,−S ·Y (T )− (−S), then
for −S Eq. (17) becomes

EP
t [exp(α|x−S |) · I{x−S≥0} − exp(α|x−S |) · I{x−S<0}] = 0. (19)

From Eq. (18), we know that θLAE
t,−S = −θLAE

t,S is a feasible solution
of Eq. (19), as in this case I{xS≥0} = I{x−S<0} and I{xS<0} = I{x−S≥0}.
Due to the convexity of u(x), thus we have θLAE

t,−S = −θLAE
t,S , for any

S ∈ CT .
(2) On the other hand, if θLAE

t,−S = −θLAE
t,S for any S ∈ CT , Eq. (17)

for θLAE
t,S and θLAE

t,−S are given by

EP
t [exp(α|xS |) · αI{xS≥0} − exp(γ |xS |) · γ I{xS<0}] = 0, (20)

EP
t [exp(α|x−S |) · αI{x−S≥0} − exp(γ |x−S |) · γ I{x−S<0}] = 0. (21)

As x−S = −xS , summing Eqs. (20) and (21) leads to

EP
t [exp(α|xS |) · α − exp(γ |xS |) · γ ] = 0, for any S ∈ CT . (22)

Thus, as γ ≥ α > 0, Eq. (22) clearly implies that α = γ and then
λE = 1. ■

The following corollary shows that LAE t-hedger differentiates
the gain and loss deviations.

Corollary 2. For any S ∈ CT , the LAE t-hedger θLAE
t,S satisfies

EP
t [exp(α|xS |) | xS ≥ 0] · Pr{xS ≥ 0} ≥ EP

t [exp(α|xS |) | xS < 0] ·Pr{xS < 0}.

(23)

Proof. For the LAE t-hedger with γ ≥ α > 0, we have

0 ≤ EP
t [exp(α|xS |) · αI{xS≥0} − exp(α|xS |) · αI{xS<0}]

= α · {EP
[exp(α|x |) · I ] − EP

[exp(α|x |) · I ]}
t S {xS≥0} t S {xS<0}

9

= α · {EP
t [exp(α|xS |) ·

I{xS≥0}

Pr{xS ≥ 0}
]

· Pr{xS ≥ 0} − exp[(α|xS |) ·
I{xS<0}

Pr{xS < 0}
] · Pr{xS < 0}},

which proves equation (23). ■

It is clear that both sides of Eq. (23) are equal if λE = 1, and the
left side is greater than the right side if λE > 1. Compared with
λE = 1, a higher proportion of the θLAE

t,S deviation punishment
comes from gains (xS ≥ 0) than losses (xS < 0) when λE >

1. Chen et al. (2020) discussed the effect of loss aversion on
deviations when using the LAMV hedging technique.

4.3. Quadratic and exponential dynamic valuations

After having introduced the specific convex t-hedgers, we now
define their corresponding CHB t-valuations: MV hedge-based
(MVHB), LAMV hedge-based (LAMVHB), exponential hedge-based
(EHB), LAE hedge-based (LAEHB) t- valuations, as well as dynamic
valuations.

Definition 15 (MVHB, LAMVHB, EHB, LAEHB t- and Dynamic Val-
uation).Consider a convex t-valuation ρt : CT → Ct , t =

0, 1, . . . , T − 1, defined by

ρt [S] = θt,S(t+1)·Y (t)+πt [S−θt,S(T )·Y (T )], for any S ∈ CT ,

where θt is a convex t-hedger and πt is a model-consistent
t-valuation; and a dynamic valuation (ρt )T−1

t=0 where all ρt are
connected in the following way:

ρt [S] = ρt [̃ρt+1 [S]] , for any S ∈ CT and t = 0, 1, . . . , T − 2.

• ρt is an MVHB t-valuation if θt is an MV t-hedger; and
(ρt )T−1

t=0 is an MVHB dynamic valuation if any ρt is an MVHB
t-valuation.

• ρt is an LAMVHB t-valuation if θt is an LAMV t-hedger;
and (ρt )T−1

t=0 is an LAMVHB dynamic valuation if any ρt is an
LAMVHB t-valuation.

• ρt is an EHB t-valuation if θt is an exponential t-hedger;
and (ρt )T−1

t=0 is an EHB dynamic valuation if any ρt is an EHB
t-valuation.

• ρt is an LAEHB t-valuation if θt is an LAE t-hedger; and
(ρt )T−1

t=0 is an LAEHB dynamic valuation if any ρt is an LAEHB
t-valuation.

The above-defined t- and dynamic valuations require the
choice of model-consistent t-valuation πt . In this study, we con-
sider the widely-used cost-of-capital approach, which is also
adopted by the Solvency II regulation. The cost-of-capital risk
margin is the following model-consistent t-valuation:

πt [S] = e−r [
EP
t [S] + icoc · VaRP

p [S]
]
,

where VaRP
p is the Value-at-Risk measure and icoc = 0.06.

From Theorem 4 we know that the MVHB, LAMVHB, EHB
and LAEHB dynamic valuations are all particular CHB dynamic
valuations; hence, they are also fair dynamic valuations.

Corollary 3. Any MVHB dynamic valuation (ρMVHB
t )T−1

t=0 , LAMVHB
dynamic valuation (ρLAMVHB

t )T−1
t=0 , EHB dynamic valuation (ρEHB

t )T−1
t=0 ,

and LAEHB dynamic valuation (ρLAEHB
t )T−1

t=0 is a fair dynamic valua-
tion.

4.4. Numerical illustration

In this section, we provide a simple numerical illustration
which determines convex dynamic valuation of a portfolio of vari-
able annuity contracts. The purpose of our numerical illustration
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s to show how the convex dynamic valuation approach can be
mplemented to valuate equity-linked liabilities in practice, rather
han to select the most appropriate convex hedging or to analyze
he implications for pricing variable annuities.

Our numerical example has some similarities with the one
n Barigou et al. (2019) and Chen et al. (2020). Barigou et al.
2019) investigated a simple equity-linked life-insurance contract
nd Chen et al. (2020) illustrated a ratchet guaranteed benefit
ayoff. We benefit from these two studies by adopting their
imulation setting and calculation technique.
It is important to remind of the distinction of our illustra-

ion. We implement and compare the EHB and LAEHB dynamic
aluations that are first proposed in this work. Since the MVHB
ynamic valuation in Barigou et al. (2019) and LAMVHB dynamic
aluation in Chen et al. (2020) are particular types of convex
ynamic valuation, we also include them in our simulation.

.4.1. Application to a portfolio of variable annuity contracts
We consider pricing variable annuity contracts with GMAB

nd GMDB riders. The GMAB rider guarantees the minimum
mount received by the annuitant after the accumulation pe-
iod, protecting the annuity value from market fluctuations; the
MDB rider protects against the risk of early death during the
ccumulation phase. For simplicity, we assume that there are
nly a risk-free asset Y (0)(t) with a constant rate r and a risky
sset Y (1)(t), t = 0, 1, . . . , T , in the financial market. Thus,
e have B(t, T ) = e−r(T−t). The specific simulation setting and

calibration of the financial market and mortality process follow
those of Barigou et al. (2019) and Chen et al. (2020). For more
details, we refer to the Appendix.

Specifically, we consider a variable annuity payoff with the
following payoff riders at time T used in Bacinello et al. (2011),12

1. GMAB rider: the insured who survives to maturity receives
at T

GA
= max(Y (1)(T ), erT );

2. GMDB rider: the insured who died at ti < T receives at T

GD
= max(Y (1)(ti), erti ) · er(T−ti).

f we denote the survival indicator of the insured by I(T ), which
quals 1 if the insured survives and 0 otherwise, thus the variable
nnuity payoff can be written as

ayoff = I(T ) · GA
+ (1 − I(T )) · GD. (24)

e consider pricing a portfolio of lx = 1000 variable annuity
ontracts with GMAB and GMDB riders at time 0 with a maturity
f T = 10 years.

.4.2. Valuation results
In this section, we use the four classes of CHB dynamic val-

ations introduced above to determine the fair dynamic value
f the time−T variable annuity liability S and provide a nu-
erical analysis. In our simulation, the CHB dynamic valuations
f this liability are calculated on the basis of 10000 simulated
cenarios. The calculation of the CHB t-hedgers and valuations
s approximated using the Least Squares Monte Carlo (LSMC)

12 The GMDB is normally paid upon the death of the insured, see Bacinello
t al. (2011). To adjust this into our setting in which the liability is only payable
t maturity time T , we assume the GMDB liability is invested in the risk-free

asset from the death of policyholder until maturity.
10
approach.13 The specific LSMC procedure and formula are given
in the Appendix.

Fig. 2 presents the expected MVHB and LAMVHB dynamic
valuations of the 10 000 simulated paths at different time points,
and Fig. 3 shows that of EHB and LAEHB dynamic valuations. The
overall relation between dynamic valuation and time t is jointly
haped by two trends: (1) it increases with t due to the upward
rend of the risky asset; (2) it decreases with t as the risk margin
alue of remaining risk diminishes over time. In general, we
bserve a steady increase in these fair dynamic valuations, except
slightly decreasing trend in the LAMVHB dynamic valuation
ith λ = 3.
Effect of loss aversion. We first examine the effect of loss

version embedded in the hedging technique of the LAMVHB and
AEHB dynamic valuations. Consistent with our expectations, the
esults show that a larger loss aversion coefficient λ or λE leads
o higher hedging costs and valuation outcomes. This is because
t costs more to construct a portfolio to avoid losses. Our result
s in line with those of Chen et al. (2020) who proposed LAMVHB
nd investigated its properties. Moreover, Fig. 3 displays a similar
onclusion that LAEHB dynamic value (with α = 0.10 and λE = 2)
s larger than EHB value (with α = 0.10 and λE = 1).

Effect of tails aversion. Next, we study the effect of tails
version on the EHB dynamic valuation. Fig. 3 compares the EHB
ynamic valuations with α = 0.01 and α = 0.10. We find that
he coefficient α increases the EHB dynamic value, suggesting
hat it is more costly to reach a relatively close hedging of large
eviations. Compared with loss aversion, the cost of tails aversion
s higher in our example. As a higher tails aversion reduces the
arge deviations and thus results in less remaining risk, the higher
HB valuation with α = 0.10 further indicates that the tails
version α leads to a higher hedging cost. Similar to the loss
version of the hedging technique proposed in Chen et al. (2020),
he tails aversion of the EHB valuation might be another feasible
ethod to control the prudence of fair dynamic valuation.14
Our numerical results demonstrate that the CHB dynamic val-

ation approach is feasible and practical. We also contribute to
he literature and illustrate one particular class of convex hedging
echniques: (loss averse) exponential hedging.

. Concluding remarks

It is challenging to determine the fair valuation of insurance
iabilities in a multi-period framework, which is often a com-
ination of hedgeable and unhedgeable risks. A fair dynamic
aluation framework was proposed in Barigou et al. (2019) which
erges model-consistent, market-consistent and time-consistent
onsiderations. To implement the fair dynamic valuation, it is
ital to determine the appropriate hedging technique.
In this study, we defined the concepts of actuarial and financial

-valuations, and then integrated them into the fair dynamic val-
ation framework. In addition, we investigated the fair dynamic
aluation of insurance liabilities via the convex hedging approach
n a multi-period dynamic investment setting. We proposed CHB
ynamic valuations that extend the convex hedging and valuation
f Dhaene et al. (2017) into a dynamic setting. We also showed
hat the class of fair dynamic valuations is equivalent to the class
f CHB dynamic valuations.

13 This regression-based method was proposed by Carriere (1996)
and Longstaff and Schwartz (2001) for the valuation of American-type options,
and also employed by Barigou and Dhaene (2019) and Chen et al. (2020) to
implement the fair dynamic hedging and valuation of insurance claims.
14 We refer to Chen et al. (2020) for a discussion on the prudence of fair
dynamic valuation.
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Fig. 2. Expected MVHB and LAMVHB dynamic valuations at different time points.
Fig. 3. Expected EHB and LAEHB dynamic valuations at different time points.
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Moreover, the convex hedging approach allows the choice of
ppropriate convex functions to obtain a fair dynamic valuation.
e illustrated how to implement CHB dynamic valuations with

wo particular classes of convex hedging technique: MV and
xponential hedging. A simple numerical illustration of pricing
ariable annuity liabilities further showed that our CHB dynamic
aluation provides a practical method for obtaining fair dynamic
alue of insurance liabilities.
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Appendix A. Simulation setting of financial market and mor-
tality process

We briefly introduce the numerical simulation setting of the
financial market and mortality process. In our simulation, we
generate 10 000 scenarios of Y (1)(t) and N(t) for t = 1, . . . , T .

First, to simplify the illustration, we assume that the stock
ollows a geometric Brownian motion:

Y (1)(t) = Y (1)(t) (µdt + σdZ1(t)) , (25)

ith the parameters µ, σ > 0. The benefit payoff equals the
aximum of the mean of the stock value from times 1 to T and
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guaranteed amount K . Thus, the insurer faces liability S at time
:

= N(T ) × max
(
Y (1)(T ), K

)
,

here N(t), t = 0, 1, . . . , T is a mortality process counting the
umber of survivals among an initial population of lx insured of
ge x. Following Barigou et al. (2019) and Chen et al. (2020),
he adopted parameters for the financial market are r = 0.02,
µ = 0.07, σ = 0.3.

Second, the mortality intensity is assumed to be stochastic and
it follows the dynamics under the P measure given by

dλx(t) = cλx(t)dt + ξdZ2(t),

with c, ξ > 0. Z2(t) is a standard Brownian motion independent
of Z1(t) in Eq. (25). The survival function is then defined by

Sx(t) := P (Tx > t) = exp
(

−

∫ x+t

x
λx(s)ds

)
,

where Tx is the remaining lifetime of an individual aged x at
time 0. Moreover, the deaths of individuals are assumed to be
independent events, conditional on the knowledge of population
mortality.15

Furthermore, we denote N(t) as the number of survived in-
sured at the end of year t , D(t) as the number of deaths in year
t . Then, the dynamics of the number of active contracts can be
described as a nested binomial process as follows: N(t + 1) =

N(t) − D(t + 1) with D(t + 1)|N(t), qx+t ∼ Bin(N(t), qx+t ). Here,
qx+t represents the one-year death probability:

qx+t := P (Tx ≤ t + 1|Tx > t) = 1 −
Sx(t + 1)
Sx(t)

, for t = 0, . . . , T − 1.

n the simulation, we adopt the parameter setting of Luciano et al.
2017) and set λx(0) = 0.0087, c = 0.0750, ξ = 0.000597, which
correspond to 55-aged male in the UK.

Appendix B. LSMC simulation procedure

We introduce the simulation procedure of implementing of
LSMC approach to obtain the CHB t-hedgers and valuations. The
key idea of LSMC is to regress the conditional expectations on
the cross-sectional information of the underlying risk drivers, as
this can substantially reduce computation intensity in dynamic
optimizations. For more detailed explanation, we refer to Barigou
et al. (2019) and Chen et al. (2020) which have adopted the LSMC
simulation procedure for fair dynamic valuation.

First, for any path i, i = 1, 2, . . . , 10 000, at any time t =

, 1, . . . , T−1, a number of 10 000 candidate scenarios of Nc(t+1)
nd Y (1)

c (t+1) are generated on the basis of N(t) and Y (1)(t). How-
ver, only one scenario is randomly chosen to be the simulated
N(t + 1), Y (1)(t)) in path i (unobservable at t). Second, at any
time t of path i, the t-hedgers and valuations are based on the
10 000 candidate scenarios. At time t of each path, the conditional
expectations are regressed over the risk drivers at time t+1 using
second-order least squares regression:
P
t

[
ρt+1 [S] |(N(t + 1), Y (1)(t + 1))

]
≈ β0 + β1N(t + 1)Y (1)(t + 1) + β2

(
N(t + 1)Y (1)(t + 1)

)2
,

for all scenarios (Nc(t + 1), Y (1)
c (t + 1)). After having β0, β1

and β2, we can obtain the estimated ρc
t+1 [S] for all candidate

scenarios. Here, the choice of the type and number of basis func-
tions follows that of Barigou et al. (2019) and Chen et al. (2020).
For a discussion of the basis functions and their implications on

15 See Milevsky et al. (2006) for similar assumptions.
12
robustness and convergence, see Areal et al. (2008), Moreno and
Navas (2003), and Stentoft (2012).

On this basis, we apply the CHB t-hedgers and valuations. The
hedge is obtained by finding the optimal strategy minimizing the
convex punishment function. For instance, the MVHB t-hedger is
obtained with an MV optimization using these 10 000 candidate
scenarios (Nc(t + 1), Y (1)

c (t + 1)) and estimated ρc
t+1 [S]. Finally,

the expected dynamic valuations of this liability are the expected
values of these 10 000 simulated scenarios.
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