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Abstract:

We investigate the relative merits of the Boston and Serial Dictatorship mechanisms when the
timing of students’ preference submission over schools varies within the structure of the mechanism.
Despite the well-documented disadvantages of the Boston mechanism (Abdulkadiroglu and Sonmez,
2003), we propose that a Boston mechanism where students are required to submit their preferences
before the realization of their exam scores, can in fact have fairness and efficiency advantages
compared to the often favored Serial Dictatorship mechanism. We test these hypotheses in a series of
laboratory experiments which vary by the class of mechanism implemented, and the preference
submission timing by students, reflecting actual policy changes which have occurred in China. Our
experimental findings confirm the efficiency hypothesis straightforwardly, and lend indirect support
to the fairness hypothesis. The results have important policy implications for school choice
mechanism design when students’ relative rankings are initially uncertain.
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1. Introduction

In school choice matching procedures, schools often have imprecise or uncertain information
about potential students they may admit, the realization of which may affect their stated preferences
over students. Students on their part, may be faced with a corresponding dilemma: schools’
perceptions of their qualifications during the admissions process may be either largely determined by
previous academic performance, or some soon-to-be-realized measure of their academic ability such
as a centralized exam. In such a situation, students and schools may have good reason to be
interested in the timing of students’ application (ie. preference) submissions in the matching
procedure.

This paper explores and experimentally tests this timing issue in the context of a school choice
problem. We investigate the fairness and efficiency results of the Boston mechanism (BOS) and
Serial Dictatorship mechanism (SD), under two timing variants for preference submission (which
can be thought of as an “application” in a centralized admission process). In the “after” setting,
students submit their preference ordering after their exam score is realized. In the “before” setting,
students submit their preference ordering before their exam score is realized, but when distributions
of possible scores (ex-ante rankings) among the pool of students are known.

Our primary insight is that when students are required to submit their preference ordering before
exam scores are realized, the often-criticized, non-strategy proof Boston mechanism can in fact
outperform SD by two measures: efficiency and ex-ante fairness. We find that while that our
efficiency hypothesis is experimentally robust, our ex-ante fairness hypothesis depends crucially on
the strategy choice of the ex-ante middle-ranked student. Only when this student plays equilibrium
rather than a truth-telling strategy is the fairness advantage of the Boston mechanism under pre-score
submission borne out empirically. Potential non-equilibrium behavior of agents in a matching
mechanism is indeed important for any real-world implementation, and truth-telling by a
“close-to-top” ranked student is a realistic scenario.

Our paper adds to a recently growing school choice matching literature which has increasingly
focused on the role of information uncertainties. These uncertainties may arise from several possible
sources: for example students’ incomplete information about other students’ preferences, or
incomplete information about schools’ priorities and quotas. These cases have been studied
theoretically by Ehlers and Masso (2007), and in experiments by Pais and Pinter (2008), and
Featherstone and Niederle (2008). Uncertainties may also arise from the matching mechanism design
itself, for example via tie-breaking rules (see Edril and Ergin (2008), Abdulkadiroglu, Pathak and
Roth (2009), and Abdulkadiroglu, Che and Yasuda (2011)).

When uncertainties are introduced into a school choice mechanism, some typical conclusions
about desirable properties of various mechanisms become questionable. The Gale-Shapley (GS)
mechanism and Top Trading Cycles (TTC) mechanism (of which Serial Dictatorship (SD) is a
special case) have been considered superior to the Boston (BOS) mechanism with respect to
strategy-proofness, efficiency and/or fairness. However, when uncertainty is introduced (via
tie-breaking or asymmetric information) those advantageous results may no longer hold.

2 Sonmez and Unver(2009), and Budish and Cantillon(forthcoming)) examine matching mechanisms with lotteries in a non-school

choice setting, which are another source of uncertainty.



Abdulkadiroglu, Che and Yasuda (2011) found that when students have identical ordinal preferences,
schools have no priorities among students, and assuming that random tie-breaking rules are
introduced, the Boston mechanism Pareto dominates the GS mechanism in terms of ex-ante welfare.
Featherstone and Niederle (2008) also found that in an asymmetric information treatment, where all
the schools have equal quotas and all the students’ preferences are randomly drawn from a uniform
distribution of all possible preference orderings, truth-telling can be an equilibrium under BOS, and
BOS can first-order stochastically dominate Deferred Acceptance (DA, a special case of GS) in
terms of efficiency, both in theory and in the laboratory. Thus, when some forms of uncertainties are
involved in the school choice mechanisms, from an ex-ante welfare criteria, the BOS mechanism is
no longer necessarily dominated by other commonly considered mechanisms.?

Our study is also related to Chiu and Weng (2009). They describe a model in which schools may
pre-commit admissions slots to students (ie. early admissions), and endogenously derive strategic
motives for schools in adding such a feature to their admission process. Our paper is similar to theirs
in the sense that we also explore a particular component of matching mechanisms seen in the real
world, but has not yet been previously analyzed in detail. Furthermore, as in their work, our primary
variable of interest involves the timing of events occurring within the mechanism.

Our experiments are inspired by China’s college admission system, which is the largest
centralized school matching problem in the world. In the Chinese context, students in some
provinces have been required to submit their preferences before their college entrance exam scores
are fully realized. Since 1978, China’s college admissions system has undergone frequent reforms
along two main lines. One reform addresses preference submission timing. Before 1989, almost all
provinces in China were using a submission-before-exam procedure. Provinces then gradually (and
irreversibly) switched to submission-after-exam procedures. Yet to this day there are still two major
provinces, Beijing and Shanghai, which adhere to the original procedure.

The advantage of the submission-after-exam system under any of the mechanisms is clear:
when students submit their preferences, they can base their submission on their realized scores
(typically students even know their absolute ranking among all students in their province) and can
thus have a better prediction about what kinds of colleges they can be admitted to.

However, there are also some “hidden” advantages of the submission-before-exam system which
we would like to explore in this paper. First, ex-ante submission protects students with higher
expected scores (arguably, those students with higher academic abilities or long term effort). When
students submit their preferences before the exam, those students with higher expected scores are
more willing to apply to better schools, while those with lower expected scores are less willing.
Students with stronger overall academic performance before the exam are thus able to separate
themselves from those of lesser average overall performance in advance.

Second, the submission-before-exam procedure takes into account not only students’ ordinal
preferences but also their cardinal preferences. When facing uncertain scores, students have to factor
in their preference intensities, not just preference orderings, in order to achieve higher expected
utility from the submission decisions. It turns out that students having higher preference intensities

® It can be shown that in the context of China’s college admissions system, the GS (or Deferred Acceptance (DA)) mechanism is
equivalent to the TTC (or SD) mechanism. Therefore, the conclusions here can be extended to the TTC or SD mechanisms. For details,
see Wu and Zhong (2012).
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for good schools are more willing to apply for them than those having lower preference intensities,
which is beneficial for an ex-ante efficient matching outcome.

In summary, although preference submission before the exam seems like a disadvantageous idea
since it increases the uncertainty faced by students, it turns out to have advantages as well — the
practice of submitting one’s preferences beforehand may serve as a pre-screening device which can
potentially improve ex-ante efficiency and fairness. By fairness, we mean that students of
demonstrated ability and/or effort (in the ex-ante case, this means before the exam), are matched to
schools of corresponding rank. The issue of ex-ante fairness is particularly policy relevant in the case
of China, since the college entrance exam is the sole determinant of admissions for the great majority
of students, and exam scores are well-acknowledged as an often noisy proxy of ability or future
qualifications (see Wu (2008), Qian and Wu (2002), Gu and Yang (2009)).

We also address a further aspect of the school choice matching problem, commonly discussed in
school choice mechanism policy in the United States. There, the primary reforms have focused on
changing existing BOS mechanisms to the TTC/SD mechanism, heeding implications from
Abdulkadiroglu and Sonmez (2003). A BOS class mechanism prioritizes students’ preference
orderings over their score rankings, while a TTC/SD mechanism prioritizes students’ score rankings
over their preference orderings.* The school choice literature has found the SD mechanism to be
strategy-proof, efficient and fair, thus making it superior to the BOS mechanism which at the very
least, is not strategy-proof.” China has also been rapidly implementing policy changes from a
BOS-style mechanism to an SD-style mechanism over the last several years. We wish to highlight
the interaction of preference submission timing and BOS versus SD matching procedures in
generating fair and efficient matching outcomes.

We also explore how personal characteristics, including risk attitudes affect students’ behavior.
In particular, we use the risk attitude test developed by Tanaka, Camerer, and Nguyen (2010) to
measure participants’ risk and loss aversion and connect them to subjects’ behaviors in the matching
procedure. We find that in general, risk aversion and loss aversion do not significantly influence
subjects’ behavior. One possible reason is that our treatment is very simple - thus maximizing
expected payoffs without particular regard to risk attitude may play a dominant role in individual
behaviors.

The remainder of the paper is organized as follows: In section 2, we describe our hypotheses and
experimental treatments, while also previewing our results. In section 3, we report the overall results
on fairness, efficiency from the experiments. In section 4, we explore behavioral differences among
different subjects, focusing on when truth-telling behaviors are more likely. Section 5 concludes.

2. Experimental Design, Hypotheses and Implementation

We specifically consider four frequently implemented mechanisms in China’s college admission
system and compare them by looking at both ex-ante and ex-post welfare consequences. Those four
mechanisms are: preference submission before the exam under the Boston mechanism (“BOS-before”

* In China, these two classes of mechanisms are called “submission without parallel preferences” and “submission with parallel
preferences” matching procedures respectively.
° The literature so far has proven that the Boston mechanism, in China’s context, can achieve the unique efficient and fair matching in
its Nash equilibrium. See Wu and Zhong (2012), and for a more general discussion, see Ergin (2002), Kesten (2006) and Haeringer
and Klijn (2009).
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hereafter), preference submission before the exam under the Serial Dictatorship mechanism
(“SD-before™), preference submission after the exam under the Boston mechanism (“BOS-after”),
and preference submission after the exam under the Serial Dictatorship mechanism (“SD-after”).

We consider two possible measurements of fairness in the paper which correspond to the notion
of stability in the general 2-sided matching literature, following Balinski and Sonmez (1999) and
subsequent works: 1. The average number of blocking pairs occurring, where a blocking pair is
defined by a (school, student) pair that have a mutual desire to alter their current assignment such
that they are now assigned to one another. The lower the average number of blocking pairs, the more
fair the matching outcome is. 2. The likelihood of a matching outcome which is completely fair, or in
other words, where no blocking pairs exist. The higher this likelihood, the more fair the matching
outcome is.

We use the sum of payoffs across players in a given match as our primary measure of efficiency.
Where possible we also consider Pareto dominance as measured by payoffs of every student type
being higher in some mechanisms than others (only possible in certain of our experimental designs).

We implement two different designs for each of the four mechanisms listed above, to address
two hypotheses. The first hypothesis is that the BOS-before mechanism can be more ex-ante fair than
the others in the sense that students with higher expected scores are more likely to be admitted by
good schools under this mechanism than under other mechanisms. The second hypothesis is that the
BOS-before mechanism can be more ex-ante efficient than others in the sense that students with
higher preference intensities for good schools are more likely to be admitted by good schools.

Our experimental results strongly support the second hypothesis, while not rejecting the first
hypothesis. The result for the first hypothesis is not significant, partly because it is sensitive to
strategies played by students with medium level abilities (or expected scores). Under the BOS-before
mechanism, students with medium level abilities may retreat by the threat of the BOS mechanism,
i.e., if they fail to get into the best school, they may fail to get into the second best school. In this
case, the result under BOS-before is significantly fairer ex-ante than other mechanisms. Instead, if
those students want to take the risk of competing for the best school, the outcome is overturned. Note
that from an ex-post consideration, our findings are largely consistent with the existing literature
(Abdulkadiroglu and Sonmez (2003)). The SD-family of mechanisms is more strategy-proof, ex-post
efficient and/or fair than the BOS-family of mechanisms.

2.1 Experimental Designs

Each of the four mechanisms of interest (BOS-before, SD-before, SD-after, and BOS-after) is
implemented in two different design: One design (which we call “ability-wise) aims at testing
ex-ante fairness while the other design (which we call “preference-wise”) aims at ex-ante efficiency.

In each of these two designs, three students (labeled 1, 2 and 3) are to be matched with three
schools (labeled A, B and C). Each school has just a single slot to be allocated. Exam scores are
determined by a single draw from a uniform distribution, and are the only determinants of schools’
priority rankings over students — that is, schools always give higher priority to students with higher
scores. In the ability-wise design, students have different expected scores which we interpret as their
underlying ability. Students have the same ordinal and cardinal preferences over the three schools. In
the preference-wise design, students have the same expected scores and the same ordinal preferences,
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however their cardinal preferences differ. Subjects are asked to submit their strict preference ordering
over schools, where each school is appears in the ordering once.

Our experiment is “small-scale” in the sense that every matching treatment consists of just three
students and three schools. The advantage of testing the mechanisms on a small scale is that we can
have clear theoretical predictions across matching outcomes to compare. The other advantage is that
for a given number of subjects in our entire study, we can have a relatively large sample of matching
outcomes so our comparison of welfare consequences can be statistically valid. This is particularly
valuable for cases of testing ex-ante fairness and efficiency, which requires a large enough sample for
different realizations of exam score rankings across students.

Before we begin to analyze equilibrium behaviors under any specific mechanism, we note that
for each player in any of the mechanisms, there are only two non-dominated pure strategies: (A, B, C)
which in our design always corresponds to truth-telling, and (B, A, C).

2.1.1 Ability-wise Design

Under the ability-wise design designed to test ex-ante fairness, subjects have different expected
scores depending on the role (student 1, 2, or 3) they are playing. Students’ score distributions by
role are shown in Table 1:

Table 1: Score Distributions under Ability-wise design

Role Score 1 Score 2 Score 3
(high) (normal) (low) Avg. score
Probability 1/3 1/3 1/3
Student 1 95 90 85 90
Student 2 91 86 81 86
Student 3 87 82 77 82

Thus each student will have an equal and independent probability of getting high, normal and
low scores, where we suppose that 100 represents full possible marks. The numerical value of the
three types of scores differs for each of the three students so that score rankings easily follow from
the random draws. In other words, student 1 has the highest average score, followed by students 2
and 3 respectively. However, in the score distributions specified in Table 1, there is a high level of
uncertainty over the final score ranking in the sense that when student 1 gets a normal score and
student 2 gets a high score, student 2 will have a higher realized score than student 1. If student 1
gets a low score and student 3 gets a high score, student 3’s ranking even surpasses that of student 1.
Analogous outcomes are possible between students 2 and 3.

In the ability-wise design all student roles have the same payoff result conditional on the school
they are assigned to. That is, not only are ordinal preferences homogeneous across students, but
cardinal preferences are as well. These payoffs, expressed in Experimental Currency Units (ECU) are
shown in Table 2:



Table 2: Payoffs for School Assignments, Ability-wise Design
Slot received at school A B C

Student (1,2, or 3)’s payoff 30 25 15

Both the score distributions (Table 1) and payoffs (Table 2) are common knowledge to all the
subjects. Note that under this payoff scheme, all matching outcomes are equally ex-ante and ex-post
efficient, since the sum of expected or realized payoffs under any mechanism is constant at 70.

We now derive the equilibrium under each of our four mechanisms of interest (BOS-before,
BOS-after, SD-before, SD-after) under the ability-wise design. Mechanisms often have multiple
equilibria, but we focus here on the equilibrium where truth-telling is a weakly dominant strategy for
every student. From here on, we will refer to this as the “truth-telling equilibrium”.

BOS-before Mechanism

Under the BOS-before mechanism, students are required to submit their preference ordering
over schools before knowing their realized exam score. After scores are randomly drawn and score
rankings are realized, students are matched under the Boston mechanism. Note that in our design (as
shown in Table 1), each student has a different realized score so that score rankings are uniquely
determined.

The procedure in our experimental design is as follows: Students submit their preference
ordering over schools, knowing the distribution of possible score outcomes in Table 1. Scores are
then drawn, determining the score ranking. Then according to the Boston mechanism: First, each
student’s first choice school is applied to by that student. If more than one student applies to the same
school, the student with the highest score will be admitted to that school. Next, for students not
admitted to any school in the first round, an application is made to their second choice school, and
each remaining vacant school admits their applicant with the highest score, and so on. In our design,
this admission procedure lasts at most three rounds, and every student is admitted to a school in the
final matching outcome.®

In this three-player simultaneous-move game, assuming players maximize expected payoffs, our
Nash equilibrium outcome of interest is characterized by any strategy profile satisfying the following:
student 1 lists school A as her first choice, and both students 2 and 3 list school B as their first choice.
Every student can order the remaining two schools (B and C in the case of student 1, and A and C in
the cases of students 2 and 3) in any order as their 2" and 3" choices. We can express this as ((A,*,*),
(B,*,*), (B,*,*)) where with slight abuse of notation, * denotes any school not yet listed by that
particular student.

The matching result is that student 1 gets admitted to school A regardless of the realized score
ranking, and that the student with the higher realized score between students 2 and 3 gets admitted to

® In the general case, all students ranking school “S” as their first choice apply to school S, and are admitted according to the school’s
rankings over the applicants and the slots available at school S. Students without admission after the first round, apply in the second
round to their second choice school, and are admitted according to the slots available at each school and schools’ rankings over the
students applying in that round. This procedure proceeds into the n™ round (with students applying to their n' choice school) for any
students who have not received admission in the 1% through (n-1)™ rounds. The mechanism ends when either every student has been
successfully admitted to one of the schools, or when all schools in the preference list of any remaining student have filled all of their
slots. See Ergin and Sonmez (2006) for general equilibrium and welfare analysis of the Boston mechanism.
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school B. The remaining student gets admitted to school C. See Appendix 1 for details.
BOS-after Mechanism

The BOS-after mechanism differs from the BOS-before mechanism in just one feature: it asks
students to submit their preference orderings after scores are realized for all students, and score
rankings are common knowledge. Under this submission-after-exam procedure, what really matters
is the realized score, or its ranking, rather than the pre-assigned roles of student 1, 2 or 3.

It is straightforward to verify the following Nash equilibrium: The student with the highest
realized score will submit her preference list as (A, *, *), student with the second highest score will
submit a preference list as (B, *, *), and student with the lowest score can submit any list, where
again, * represents any school not yet listed by that particular student.

The matching outcome is that the student with the highest score gets admitted to school A, the
student with the second highest score gets admitted to school B, and the student with the lowest score
gets admitted to school C. Note that this outcome has the desirable property that students with higher
realized scores get admitted to schools with higher payoffs (which we later call complete fairness).

SD-before/after Mechanism

The Serial Dictatorship mechanism in our experiment works as follows: first, the student with the
highest realized score gets admitted to her first choice school. Then, the student with the second
highest realized score is admitted to one of the remaining unoccupied school slots according to her
preference ordering. Finally, the student with the lowest score is admitted to the remaining
unoccupied school.’

Similarly to the cases of BOS-before and BOS-after, the SD-before and SD-after mechanisms
differ only in the timing of preference submission. Again, the SD-before mechanism has students
submitting their preferences before their exam scores are realized, while the SD-after mechanism has
preference submission after the exam scores are drawn and become common knowledge. In both
cases the SD matching algorithm then proceeds as described above based on the realized score
rankings.

The SD mechanism is strategy proof — no student benefits from misrepresenting his or her
preference in equilibrium. Our truth-telling equilibrium of interest has each student submitting their
preference orderings as (A, B, C). In both SD-before and SD-after, the matching outcome is the same
as in the BOS-after mechanism: that is, the student with the highest realized score gets admitted to
school A, the student with the next highest realized score gets admitted to school B, and the student
with the lowest score gets admitted to school C.

Fairness Measures

We follow previous literature (ex. Balinski and Sonmez (1999)) in using the concept of stability
to measure the fairness of matching outcomes. We define a (i,S) as a blocking pair when student i
prefers school S to her current matched school, while at the same time, school S prefers student i to

7 In the general case of simple serial dictatorship, students are strictly ordered (based on some dimension, such as exam score).
According to this ordering of students, each student one-by-one, applies to schools in sequence determined by her preference ordering
and is admitted to the first school that has a slot available. The mechanism ends when either every student has been successfully
admitted to one of the schools, or when all schools in the preference list of remaining un-admitted students have filled all their slots.
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its currently admitted student. If a matching outcome has at least one such blocking pair, then the
matching is not stable in the sense that student i and school S have incentive to terminate their
current matching, and self-match with one another.

The link between fairness and stability arises from the basic logic that each side of the market
(students and schools) should have success in being matched to their preferred choices in accordance
with the qualifications that make them desirable to the other side of the market. In our school choice
context this implies that those students who are more preferred by schools (by means of a high test
score), should receive admissions at a high-payoff school (where we use high payoff to proxy for
school quality and reputation). Furthermore, higher-payoff yielding schools should successfully
enroll high scoring students.®

Keeping this reasoning in mind, we are interested in using the number of blocking pairs in the
match as one measure of fairness. We call a match completely fair if there are no blocking pairs in
the match. The degree of fairness can either be measured by the likelihood of a completely fair
matching outcome, or by the average number of blocking pairs across student score ranking
scenarios. A smaller number of blocking pairs or a higher likelihood of a completely fair matching in
equilibrium implies a more fair match. We define ex-ante fairness as using the expected score
ranking as the measure of schools’ preferences over students, whereas ex-post fairness uses the
realized score ranking.

Our analysis up until now has shown that of the four mechanisms considered, the BOS-before
mechanism’s resulting allocation differs from the other three mechanisms. It is intuitive that
BOS-before should be more ex-ante fair than the other three mechanisms (although not completely
ex-ante fair, due to the uncertain placements of students 2 and 3). In fact, BOS-before weakly
dominates in terms of the number of blocking pairs present under each score ranking scenario; in
other words, if student i and school S form a blocking pair in BOS-before under some realized score
ranking, then there exists a school S’ such that (i,S’) form a blocking pair in the other three
mechanisms. More generally, this will remain true in our experimental design, holding all else equal,
if the payoff for being assigned to school B is at least 22.5.° However, the BOS-before mechanism is
less ex-post fair than the other three. In fact, the other three mechanisms attain complete ex-post
fairness under every possible realized score ranking.

One of the main points we wish to highlight in this paper is that although BOS-before is in
general less ex-post fair than the other mechanisms we consider, it can have the favorable property of
being more ex-ante fair under certain payoff structures, thus distinguishing it from the other three
mechanisms. Table 3 shows the ex-ante and ex-post fairness properties for BOS-before as well as the
other three mechanisms, under each possible realized score ranking outcome.

The third sub-column in each column (labeled BOS-before (s2 deviates)) considers the
possibility that student 2 plays a truth-telling strategy rather than her equilibrium strategy.*****? We

® In the Chinese university admissions process, it is generally the case that preferences among schools over students are largely
homogenous (schools would prefer to have students who score higher on the CEE exam), and further, that student preferences over
universities are also largely homogeneous (students prefer to attend a university with a good reputation).
® This can be demonstrated by normalizing the payoffs for school A and C such that 1 and 0 are the associated payoffs respectively.
The only remaining payoff to determine is that for school B. In our design, it can be shown that the equilibrium strategy profile is
((A*,%), (B,*,*),(B,*,*)) if and only if the payoff for school B is no less than 1/2.
10 Note that it is only necessary to consider this deviation in the BOS-before case, since the other mechanisms already have
truth-telling as their equilibrium strategy of interest.
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are particularly interested in the consequences of potential deviations by student 2 due to the high
frequency of occurrence in our experimental data. In particular, student 2’s in the BOS-before
mechanism play truth-telling 45% of the time. (See Table 5A in the Appendix for details) Specifically,
consider when student 2 deviates from equilibrium strategy (B, A, C) to truth-telling strategy (A, B,
C). Such a deviation can result from a miscalculation of the whole ranking distribution and/or her
expected payoffs. In this case, BOS-before mechanism has a probability of zero to be fully ex-ante
fair, less than that of other mechanisms. Its average number of blocking pairs is 4/3, larger than that
of other mechanisms. The BOS-before mechanism becomes even less ex-ante fair than others. Thus
our hypothesis may be sensitive to student 2’s behavior.*®

Table 3: Ex-ante and Ex-post Fairness Under Ability-wise Design

Realized | Prob. Matching result = Completely Ex-ante fair? Completely Ex-post fair?
Score (number of blocking pairs in (number of blocking pairs in
. (A,B,C)
rankings parentheses) parentheses)
BOS Others BOS-before | BOS Others BOS-before | BOS Others BOS-before
-before (s2 deviates) | -before (s2 deviates) | -before (s2 deviates)
(1,2,3) |10/27 1,23 1,2,3 11,32 Yes Yes No(1) Yes Yes No(1)
(1,3,2) | 7127 1,32 1,32 1,32 No(1) | No(1) | No(1) Yes Yes Yes
(2,1,3) | 7127 1,23 2,1,3 1231 Yes No(1) | No(2) No(1) | Yes No(1)
(2,3,1) |1/27 1,23 2,3,1 (231 Yes No(2) | No(2) No(2) | Yes Yes
(3,1,2) |1/27 1,32 3,1,2 1,32 No(1) | No(2) [ No(1) No(1) | Yes No(1)
(3,2,1) | 127 1,32 3,2,1 12,31 No(1) | No(3) [ No(2) No(2) | Yes No(1)
Prob. of 2/3 10/27 |0 17/27 |1 8/27
Complet
€
fairness
Avg. # 1/3 7/9 4/3 4/9 0 19/27
of
blocking
pairs

1 Note the penalty of playing truth-telling for player 2 compared to playing equilibrium is only 1.67, a relatively small fraction of
total possible payoffs. The correct expected payoff for student 2 to choose the equilibrium strategy (B, A, C) is 65/3=21.67, and the

correct expected payoff of deviation to choose (A, B, C) is 20.

12 Note that in BOS-before, student 1’s equilibrium strategy does not preclude truth-telling.
¥ Wu and Zhong (2012), find that students admitted into a top college under the BOS-before mechanism have no higher college

performance than admitted under other mechanisms. If we interpret college performance as a good proxy for students’ internal ability,
their findings through field data are consistent with our experimental results.
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Hypothesis 1: Under the above-mentioned ability-wise design, the BOS-before mechanism will
implement (in its Nash equilibrium) more ex-ante fair matching than the other three mechanisms
(BOS-after, SD-before and SD-after), although it will implement a less ex-post fair matching.

2.1.2 Preference-wise Design

We now turn to our experimental settings designed to test Hypothesis 2 regarding efficiency.
Under the preference-wise design, all student roles have the same expected scores as well as the
same score distribution. They have the same ordinal preferences over schools, but their cardinal
preferences differ. We specifically consider the case where student 3’s valuation of school A is less
than that of Students 1 and 2, but our hypothesis also holds for the case where student 3 (or any
single student)’s valuation of school A is higher than that of the other students. Their payoffs from
being admitted to each school are shown in Table 4 below:

Table 4: Score distributions, Preference-wise Design

Slot received at school A B C
Payoff of student 1 31 22 18
Payoff of student 2 31 22 18
Payoff of student 3 25 22 18

We again consider equilibrium under each of the four mechanisms: BOS-before, BOS-after,
SD-before, SD-after.

BOS-before Mechanism

It is easily found that under the BOS-before mechanism, in equilibrium, students 1 and 2, who
value school A more than student 3, submit their preference ordering as (A, B, C), while student 3
submits (B, *,*). Again, we use “*” to represent any school not yet listed by that student. Student 1
and 2 then have an equal probability of getting into schools A and C, while student 3 gets into school
B. (See Appendix 2 for details.)

Other Mechanisms

Similar to the ability-wise design, the other three mechanisms can be considered separately from
the BOS-before mechanism.

Under BOS-after mechanism, scores have already been realized when preference orderings are
submitted. So the student with the highest score submits (A, *,*) and gets into school A. The student
with the second highest score submits a list of (B,*,*) and gets into school B. The student with the
lowest score can submit any list and gets into school C. Note that all the three students face equal
probabilities of being the student with highest, second highest and lowest score, so each student has
the same probability of getting into each of the three schools.

Under the SD-before and SD-after mechanisms, as mentioned above, truth-telling is the
dominant strategy for all students. So under this dominant strategy equilibrium, the matching result is
identical to the BOS-after mechanism. As in the ability-wise design, BOS-before mechanism is less
ex-post fair than the other three mechanisms. Note also that all the possible matching results are
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equally ex-ante fair since all the students have the same expected score.
Efficiency Measures

We consider two possible measures of efficiency: Pareto dominance, and maximizing the sum
of payoffs across students.

In the case of ex-post efficiency, since all students have the same ordinal preference, no
matching result can be Pareto dominated by any other matching result (every mechanism
implements an ex-post Pareto efficient matching outcome). Thus for the ex-post case, we can only
use the sum of realized payoffs as the efficiency criterion. The BOS-before mechanism implements
the allocation which maximizes the sum of payoffs across students with certainty, since it prevents
student 3, the student with the lowest value on school A, from getting into this school. All the other
mechanisms only implement this result with probability less than 1, since student 3 still has a chance
to get into school A.

In the case of ex-ante efficiency, we can consider both measures. For the criterion of maximizing
total expected payoffs, BOS-before is superior to the other mechanisms since it in fact always
implements the total payoff maximizing result. Furthermore, by the Pareto efficiency criterion,
BOS-before is still more ex-ante efficient than other mechanisms. As seen in Table 5, the
BOS-before mechanism Pareto dominates the other mechanisms in expectation by giving each
student a strictly higher expected payoff.

Table 5 shows students’ expected payoffs under different mechanisms, according to our
equilibrium of interest:

Table 5: Expected Payoffs (efficiency measures)

Expected payoff BOS-before mechanism Other mechanisms
Student 1 (31+18)/2=24.5 (31+22+18)/3=23.67
Student 2 24.5 23.67

Student 3 22 (25+22+18)/3=21.67
Total 71 69

Hypothesis 2: Under the above-mentioned preference-wise design, the BOS-before mechanism will
implement (in its Nash equilibrium) a more ex-ante (and ex-post) efficient matching than the other
three mechanisms (BOS-after, SD-before and SD-after)."

2.2 Experimental Setup

We conducted 2(designs)*4(mechanisms) = 8 different treatments as described in the previous
section. Within each experimental session, subjects played both the pre-exam score preference
submission game and the post-exam score preference submission game for the same mechanism. We
alternated the sequence of preference submission timing conditions across sessions to account for

4 Note however that in the preference-wise design, BOS-before is (as in the ability-wise design) less ex-post fair than the other
mechanisms.
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any potential systematic biases due to ordering effects. Thus subjects need to submit their
preferences under both timing scenarios, allowing us to know the effect of submission timing within
subject.

For each treatment, groups of three are formed and students are asked to play each of the three
possible student roles (Student 1, Student 2, Student 3) in a randomly assigned order. Participants are
anonymous within groups, and groups were randomly re-formed after each round so as to avoid
reputation building within groups. Each subject makes 6 school choice decisions in total.

At the end of each session subjects complete an incentivized risk attitude test (Tanaka, Camerer
and Nguyen, 2010)." We use Tanaka, Camerer and Nguyen (2010) because it provides a richer set
of parameter estimates than Holt and Laury (1994), including a measure of loss aversion.

In the procedure where submission occurs before the exam (either under BOS or SD
mechanism), students only know about score distributions of each student role but not students’
realized scores. In the procedure where preference submission occurs after the exam, students are
notified of the score outcomes of all the students in his or her group before making the submission.
In the ability-wise design, score distributions are designed so that each student will have different
scores by random draws from the distribution. In the preference-wise design, we avoid equal scores
by random draw without replacement from the same distribution for all the students. Both procedures
give us a strict score ranking over students.

Students were paid according to the sum of payoffs from all rounds, after converting
experimental currency units (ECU) to Chinese Yuan. Subjects were only told their total earnings after
completing all of their decisions, so that learning effects due to performance feedback from previous
rounds are ruled out.

We recruited subjects from among the pool of undergraduate students at Tsinghua University
using the ORSEE online recruiting system. We conducted all 8 sessions on May 27" (2 sessions) and
on June 3" (6 sessions) of 2012. Each session had between 33 and 42 subjects, depending on the
show-up rate, and each session lasted approximately an hour. The average payoff to each subject was
about 80 yuan YMB, including the show-up fee (10 yuan). The minimum payoff was 60 yuan and
the maximum payoff was 95 yuan.

All sessions were conducted in Tsinghua University, School of Economics and Management’s
Experimental Economics laboratory (ESPEL) and students completed the experiments on computer
terminals.'® The experiments were implemented using Z-tree. Details of each of the sessions are
shown in Table 6.

15 Since risk attitudes were a factor we wished to control for, but were not the main purpose of our study, we incentivized the Tanaka,
Camerer, Nguyen test on a randomly selected subject in each session as follows: Subjects filled out the risk attitude form shown in the
Appendix, and we informed subjects ahead of time that one randomly selected subject from each session would be chosen to have the
risk attitude test implemented according to their answers. Once a subject had been randomly chosen in each session, we randomly
drew a row number and implemented the lottery from that row. Then selected subject was paid according to his stated preference in the
risk attitude form.
16 http://espel.sem.tsinghua.edu.cn/intro.htm
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Table 6: Experimental Sessions'’

Session Design Mechanism Timing(1*  #of
Name procedure/2™  Subjects
procedure)

B-a-1 Ability-wise BOS before/after 36
B-a-2 Ability-wise BOS after/before 39
S-a-1 Ability-wise SD before/after 39
S-a-2 Ability-wise SD after/before 36
B-p-1 Preference-wise BOS before/after 36
B-p-2 Preference-wise BOS after/before 36
S-p-1 Preference-wise SD before/after 33
S-p-2 Preference-wise SD after/before 42

3. Results: Efficiency, Fairness and Strategy-Proofness

In this section we present our experimental results. Overall, our experiments supported our
efficiency hypothesis (Hypothesis 2) more strongly than our fairness hypothesis (Hypothesis 1).
Nevertheless, Hypothesis 1 is also not rejected by the data. We hypothesize that the ambiguity
regarding Hypothesis 1 in our data may be due to subjects’ behavioral response to certain features of
our experimental design, and we explore the causes of these issues further in Section 4.

We first present our efficiency results which are relatively straightforward. We then turn to a
more detailed discussion of our fairness results. Since empirical strategy-proofness affects the degree
of adherence to our hypotheses about efficiency and fairness, we discuss the strategy-proofness of
each mechanism prior to discussing the main efficiency or fairness results.

3.1 Efficiency Results (Preference-wise Design)

3.1.1 Strategy-Proofness in the Preference-wise Design

Table 13 (see also figure 3(b)) shows truth-telling as an empirical measure of
strategy-proofness, for each of the four mechanisms under the preference-wise design. As predicted
by previous theory, the two SD mechanisms are substantially more strategy-proof than the other two
BOS mechanisms. However, submission timing still matters. Within each mechanism type, BOS or
SD, the submission before exam procedure induces more truth-telling than submission after the exam.
Student 1 and 2, having the same ex-ante expected scores, are often both willing to compete for
school A when submitting preferences before exam, but are no longer incentivized do so once score
rankings are realized in the submission after exam procedure.

7 The complete instruction manual of session “B-a-1" is in the Appendix. Instruction manuals of session “S-a-1”, “B-p-1” are also
briefed in appendix, showing how they differ from session “B-a-1". Instructions of sessions “B-a-2”, “S-a-2” and “B-p-2” are not
reported, since they only differ from the corresponding session with number “1” in title in sequences of conducting “submitting before
score known” and “submitting after score known” procedure. Instruction manual of session “S-p-1/2” is a combination of “S-a-1/2”
and “B-p-1/2” in an easily understandable way.
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Table 13: Strategy-proofness in Preference-wise Design
panel A: proportions of truth-telling under different

mechanisms
BOS-before BOS-after SD-before SD-after
0.690 0.426 0.933 0.858

panel B: differences in proportions and p-values of
significance tests

before-after BOSb-BOSa BOSb-SDb  BOSb-SDa

0.168 0.264 -0.244 -0.168

(0.000) (0.000) (0.000) (0.000)

Note: p-values are derived from running probit regression of

truth-telling dummies on mechanism/timing dummies within
timing/mechanism. Standard errors are corrected for clusters

on the subject level.

3.1.2 Ex-ante Efficiency

We examine ex-ante efficiency of each the four mechanisms by two methods: the sum of
expected payoffs (displayed as average expected payoffs) obtained across student-school matches,
and whether average payoffs by student type in some mechanisms Pareto dominate other
mechanisms. Total expected payoffs are simply the sum of all the three student types by matching
group. These are ex-ante measures in the sense that the calculation was done conditional on other
subjects’ strategy choices, but prior to the realization of scores. Given our sample size, there should
be enough realizations of scores such that the empirical average of payoffs reflects expected total
payoffs under each mechanism.

Table 11 (and Figure 4) shows average ex-ante total payoffs under each of the four mechanisms.
The average ex-ante total payoff is significantly (at the 95% level) larger under the BOS-before
mechanism than under the other mechanisms, and the gap is very close in magnitude compared to the
theoretical prediction shown in Table 5. Thus we find strong support for Hypothesis 2 using the
ex-ante total payoff criteria.
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Figure 4: Ex-ante Efficiency under Preference-wise Design
(Means and 95% confidential intervals are shown)

Total Profit per Matching
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BOS SD
Mechanism
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Table 11: Total Expected Payoffs in Preference-wise Treatment
panel A: total ex-ante expected payoffs under different

mechanisms
BOS-before BOS-after SD-before SD-after
70.417 68.917 69.240 68.920

panel B: differences in total payoffs and p-values of
significance tests
before-after ~ BOSb-BOSa  BOSb-SDb BOSb-SDa
0.898 1.500 1.177 1.497
(0.061) (0.023) (0.096) (0.023)
Note: p-values are derived from running OLS regression of

truth-telling dummies on mechanism/timing dummies within
timing/mechanism. Standard errors are corrected for clusters on
the session level.

Next, we look at average expected payoffs within each specific student role (Student 1, 2, and 3)
for each mechanism, to explore the prediction that BOS-before Pareto dominates others from the
ex-ante standpoint.

Table A3 describes Hypothesis 2°s success using the Pareto dominance criteria. Panel A shows
each player type’s average ex-ante expected payoff, given the preference submission choices of other
subjects in that player’s group. Students 1 and 2 (whose payoff possibilities are identical), receive
significantly higher expected payoffs under BOS-before than under the BOS-after mechanism. The
ex-ante expected payoffs for students 1 and 2 are higher under BOS-before than under the SD-before
mechanism on average, but not significantly so. Student 3’s payoff under the BOS-before mechanism
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is not significantly different from that under other mechanisms. Thus support for the Pareto
dominance hypothesis is found for students 1 and 2, while for student 3 the evidence is weaker
although not strictly contrary to the hypothesis.

Table A3: Ex-ante Pareto Dominance in Preference-wise Design

panel A: Profits under different mechanisms

f;:)iem BOS-before BOS-after SD-before  SD-after
type
18 24.507 23.521 23.767 23.580
type 3 21.403 21.875 21.707 21.760
panel B: differences in profits and p-values of significance tests
:;‘;Zent before-after BOSb-BOSa BOSb-SDb  BOSb-SDa
type 1&2 0.578 0.986 0.740 0.927
(0.091) (0.047) (0.191) (0.057)
type 3 -0.259 -0.472 -0.304 -0.357
(0.264) (0.192) (0.494) (0.278)

Note: p-values are derived from running OLS regression of truth-telling
dummies on mechanism/timing dummies within timing/mechanism.
Standard errors are corrected for clusters on the session level.

3.1.3 Ex-post Efficiency

We cross-check the results in the previous ex-ante efficiency section using the sum of realized
payoffs conditional on student score ranking outcomes, as our ex-post efficiency measure. Recall that
in the case of ex-post efficiency, no mechanism Pareto dominates another mechanism — hence our
only relevant measure in the ex-post case is the sum of realized payoffs. We expect the results to be
largely consistent with the ex-ante measures in Table 11, since the two only differ by actual score
ranking outcomes realized.

Table 12 shows a measure of ex-post efficiency for each of the four mechanisms, in terms of the
sum of realized payoffs. We condition the payoff results on the realized score ranking among
students 1, 2 and 3 (leftmost column) to reflect the ex-post nature of the measure. BOS-before
performs marginally better in this regard, having slightly higher average payoff totals than the other
mechanisms in the cases where student 3’s score is ranked first. Table A5 in the Appendix shows the
statistical significance of the differences between the mechanisms shown in Table 12.
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Table 12: Ex-post Efficiency: Total Payoffs (conditional on realized scores)

realized

score

ranking BOS-before BOS-after SD-before SD-after
(1,2,3) 71.000 71.000 71.000 71.000
(1,3,2) 71.000 71.000 70.625 71.000
(2,1,3) 71.000 71.000 71.000 71.000
(2,3,1) 71.000 71.000 71.000 71.000
(3,1,2) 69.500 65.000 65.000 65.462
(3,2,1) 68.692 65.500 65.750 65.000

total payoffs under different mechanisms

3.2 Fairness Results (Ability-wise Design)

3.2.1 Strategy-proofness in the Ability-wise Design

Table 10 (and Figure 3(a)) shows how strategy-proofness empirically holds up under each of the
four mechanisms under the ability-wise design. The two SD mechanisms induce truth-telling
behavior with a proportion of more than 70% in our experiments, either under the submission-
before-exam or after-exam procedure. Truth-telling behaviors are far less prevalent (as expected)
under the two BOS mechanisms, with a proportion of just 40% to 50%. However, the prevalence of
truth-telling in the data generally still exceeds the rate predicted by the theory, particularly in the case
of BOS-before.

The reason might be as follows: Under the BOS-after mechanism, all the students know their
score and its ranking. For the second-ranked student, it no longer makes sense to compete for the
best school (school A) with the top-ranked student. But under the BOS-before mechanism, the
ex-ante second-ranked student (student 2) may take the risk of competing for admission at school A
with the best student, rather than listing school B as her first choice as our framework predicts. Such
behavior by student 2 can weaken the implicit ex-ante sorting mechanism offered by BOS-before,
and reduce adherence of the data to Hypothesis 1. We explore this deviation from our equilibrium
prediction in greater detail in Section 4.

Table 10: Truth-telling in Ability-wise Design
panel A: proportions of truth-telling under different

mechanisms
BOS-before BOS-after SD-before  SD-after
0.516 0.391 0.778 0.720

panel B: differences in proportions and p-values of
significance tests
before-after BOSb-BOSa BOSb-SDb  BOSb-SDa
0.091 -0.124 -0.262 -0.204
(0.001) (0.009) (0.000) (0.000)
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Note: p-values are derived from running probit regression of
truth-telling dummies on mechanism/timing dummies within
timing/mechanism. Standard errors are corrected for clusters
on the subject level.

3.2.2 Ex-ante Fairness

Table 7 (see also Figure 1) shows the ex-ante fairness property of matching results under each of
the four mechanisms. Proportions of completely ex-ante fair matching are not significantly different
among all the four mechanisms at the 95% level. The BOS-before mechanism has the second-highest
proportion of ex-ante fair matching, only slightly less than that of SD-before mechanism. Thus our
Hypothesis 1, that the BOS-before mechanism should be more ex-ante fair than the other three
mechanisms, does not gain strong support in the aggregate data. Table Al in the Appendix shows the
average number of blocking pairs for each of the mechanisms, with similar results.

Figure 1: Complete Ex-ante Fairness under Ability-wise Design
(Means and 95% confidential intervals are shown)

Proportions of Ex-ante Fair Matchings

BOS
Mechanism

‘l:l Before | After‘

Table 7: Ex-ante Fairness in Ability-wise Designs

panel A: proportions of completely ex-ante fair
matches under different mechanisms
BOS-before  BOS-after  SD-before ~ SD-after
0.400 0.293 0.413 0.320
panel B: differences in proportions and p-values of
significance tests
before-after  BOSb-BOSa  BOSb-SDb BOSb-SDa
0.100 0.107 -0.013 0.080

(0.075) (0.187) (0.756) (0.318)
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Note: p-values are derived from running probit regression of
truth-telling dummies on mechanism/timing dummies within
timing/mechanism. Standard errors are corrected for clusters on
the session level.

Our results show that preference submission timing as a whole appears to matter, although it
does not differ significantly within a given mechanism (BOS or SD). In fact, when we test the effect
of timing across the BOS and SD mechanisms, the difference is significant at the 90% level
(p-value=0.075, not reported in the table). By contrast, mechanism specific effects across different
timings were insignificant (p-value=0.763, not reported in the table). Thus, the ex-ante fairness
results confirm that submission timing indeed plays a significant role in terms of fairness outcomes.

Table 8 categorizes ex-ante fairness results within the BOS-before mechanism separately for
cases where student 2 plays the equilibrium strategy and where student 2 plays the truth-telling
strategy. The difference in ex-ante fairness is large. When student 2 plays the equilibrium strategy, as
we predict, the matching outcome is substantially more likely to be completely ex-ante fair than
when student 2 chooses truth-telling. This confirms that student 2’s behavior is indeed critical.
However, it is also notable that the outcome in the case of equilibrium play of student 2 is also
substantially more likely to be completely ex-ante fair compared to any of the other mechanisms (see
Table 7). This provides some indirect evidence for Hypothesis 1, but also shows that the aggregate
result is quite sensitive to subjects’ propensity to play equilibrium.

Table 8: Ex-ante Fairness in BOS-before, Ability-wise Design, by Strategy of Student 2

proportions of completely ex-ante fair differences in proportions
mechanism matches for student 2's different behaviors and p-values of
equilibrium strategy truth-telling significance tests
0.516
BOS-before 0.634 0.118
(0.000)

Note: p-values are derived from running probit regression of truth-telling dummies on mechanism/timing
dummies within timing/mechanism. Standard errors are corrected for clusters at the session level.

3.2.3 Ex-post Fairness

Table 9 (see also Figure 2) shows the ex-post fairness property of each of the mechanisms,
measured by proportions of completely ex-post fair matches. Similar results for the measure using
number of blocking pairs are shown in Table A2 in the Appendix.

Consistent with Hypothesis 1, the BOS-before mechanism is less ex-post fair than all the other
mechanisms. Only 40% of all the matching results under the BOS-before mechanism are completely
ex-post fair, compared with around 90% of all the other mechanisms. This can be compared to our
theoretical prediction in Table 2, in which BOS-before yields 63% complete fairness, while other
mechanisms yield 100% complete fairness. In fact, the empirical gap between the ex-post fairness of
BOS-before and other mechanisms is nominally larger than the theoretical gap.
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Furthermore, the SD-after and BOS-after mechanisms are empirically significantly more ex-post
fair than the SD-before mechanism. This is reasonable because in theory ex-post fair matching might
be only one of many equilibrium outcomes under the SD-before mechanism, but under the SD-after
and BOS-after mechanisms, it is the unique equilibrium outcome.*® The result again highlights the
importance of submission timing, either under the BOS or SD mechanism.

Figure 2: Ex-post Fairness under Ability-wise Design
(Means and 95% confidential intervals are shown)

Proportions of Ex-post Fair Matchings

BOS SD
Mechanism

‘I:I Before [ After‘

Table 9: Ex-post Fairness In Ability-wise Design
panel A: proportions of completely ex-post fair
matches under different mechanisms
BOS-before BOS-after SD-before  SD-after
0.400 0.987 0.853 0.987
panel B: differences in proportions and p-values of
significance tests
before-after BOSb-BOSa BOSb-SDb  BOSb-SDa
-0.360 -0.587 -0.453 -0.587
(0.000) (0.000) (0.000) (0.000)

Note: p-values are derived from running probit regression of
truth-telling dummies on mechanism/timing dummies within
timing/mechanism. Standard errors are corrected for clusters on
the session level.

4. Explaining truth-telling behaviors

How closely the data confirm or refute our hypotheses about fairness and efficiency clearly
hinges upon how well subjects adhere to our equilibrium strategies of interest. There could be a

18 For the uniqueness of equilibrium outcome under the SD(-after) mechanism, an additional condition on school priorities called
acyclicity is required. For details, see Haeringer and Klijn (2009).
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number of reasons for them to deviate from submitting preferences that match our specified
prediction. Such reasons may include risk attitudes, beliefs about what other subjects will submit,
desire to compete, and others. Appendix 5 provides detailed summary statistics about tendency to
truth-tell in our experiment by student type in each design. Readers interested in a detailed analysis
and discussion of truth-telling behavior, are directed to Appendix 5. In this section we focus on
whether truth-telling may be linked to risk preference as measured in our risk attitude test, personal
experience, or other demographic variables.

We restrict our analysis to non-dominated strategies by omitting all the samples where
dominated strategies were played, and analyze behavior at the level of each decision made in the
experiment.® During the experiments, we collected several personal characteristics of our subjects
via an end-of-session survey, including age, years of schooling completed, gender and major. We also
collect information on their college entrance exam experience, including whether they took the exam,
when and where. If they did not attend the exam, we instead ask them to provide when and where
they graduated from the high school. From the time and location of the exam reported, we can derive
the particular school choice mechanism they experienced when they were applying to colleges. We
also test subjects’ risk and loss attitude by using a recently developed test by Tanaka, Camerer and
Nguyen (2010).

Using Tanaka, Camerer and Nguyen’s (2010) methodology, three parameters can be derived for
each subject: 6, o and A. O reflects the subject’s risk aversion via a power function, where higher 6
implies a lower risk aversion. o reflects how the subjects value likelihood of events with small vs.
large probability. When o is small, subjects tend to overvalue small probability events but
undervalue large ones. A is the parameter of loss aversion, where larger A means a higher loss
aversion.”® The table of summary statistics for those three parameters in each treatment is shown in
the Table A9. Our parameter estimates are quite similar to those found by Tanaka, Camerer and
Nguyen (2010) in Vietnamese villages, and are statistically indistinguishable across sessions.

Table A9: Summary Statistics of Risk Attitude Parameters

Ability-wise design

Variable Obs Mean Std. Dev. Min  Max
0 150 0.709 0.319 0.05 15
a 150 0.774 0274 015 145
A 150 2.689 2453 0.07 9.78
Preference-wise design
Variable Obs Mean Std. Dev. Min  Max
0 147 0.761 0.303 0.05 15
o 147 0.789 0.274 0.05 145
A 147 2.462 2316 0.07 9.67

Note that individual risk attitude parameters may correlate with variables such as gender, age, or

19 In all the sessions, non-dominated strategies account for over 90% percent of subjects’ behaviors. Subjects may choose to play a
dominated strategy when they are (at least in equilibrium) indifferent with non-dominated ones. Here we do not tend to explain
dominated vs. non-dominated strategies.
2 gee Tanaka, Camerer, and Nguyen (2010) for details.

22



major. We run regressions of truth-telling behaviors on risk attitude variables with and without
control of others. Since our primary interest lies in whether the risk parameters explain strategy
choices in the matching results, we simply include those demographic variables as controls in the
regression.

Table 14 reports how truth-telling is explained by factors we observe, including mechanisms,
design, student types and personal attributes (risk attitude, demographics, etc.) using a probit model.
We find that while mechanism and student role are significant factors (as previously discussed),
personal attributes do not play a very significant role. Estimated risk attitude parameters are in fact
individually and jointly insignificant in predicting truth-telling. Within demographics, female
students tend to be slightly less truth-telling under the preference-wise design than males. Age and
year in college are significant under the ability-wise design at a 10% level. Real life CEE
experiences are also largely insignificant, except that whether students have CEE experience at all is
negatively associated with truth-telling behavior under the ability-wise design. The impact of real life
admission mechanisms experienced on their behaviors is also small: only timing has a significant
effect at 10% level under preference-wise design.

Table 14: Determinants of Truth-telling: Probit Model

explained var.: truth-telling

explanatory variables  ability-wise design preference-wise
design
BOS (vs. SD) -0.405*** -0.424***  -0.343*** -0.361***
(0.0506)  (0.0516) (0.0439)  (0.0428)
Before (vs. After) 0.0131 0.0189 0.103**  0.0921*
(0.0452)  (0.0455) (0.0492)  (0.0497)
BOS*before 0.0876 0.0887 0.0620 0.0719

(0.0623)  (0.0622) (0.0492)  (0.0492)
Type Lstudent (vs.  0.410%%*% 0.410%**  0.115%%* 0.110%**

type 3 student) (0.0321)  (0.0319) (0.0266)  (0.0268)
Type 2student (vs.  0.104*** 0.193%%*  (0.145%** (,138%**
type 3 student) (0.0320)  (0.0329) (0.0257)  (0.0257)
0 0.0756  0.108 -0.0297  -0.00913
(0.0692)  (0.0659) (0.0503)  (0.0527)
o 0.0368  0.0566 0.0845  0.0924
(0.0969)  (0.0952) (0.0612)  (0.0607)
A 0.00517  0.00215 0.00530  0.0108

(0.00871) (0.00802) (0.00640) (0.00734)
joint sig. of risk

0.521 0.245 0.504 0.225
parameters (prob.>F)
female 0.0372 -0.0901**
(0.0463) (0.0363)
age 0.0560* -0.00793
(0.0337) (0.0202)
grade -0.0865* 0.0139
(0.0444) (0.0285)
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exam taken? -0.136*** 0.0360
(0.0505) (0.0391)
partial parallel 0.0561 0.0415
(0.0624) (0.0517)
complete parallel -0.0998 0.0390
(0.0620) (0.0577)
submit before exam -0.0903 0.0559
(0.0775) (0.0375)
submit after exam but -0.0674 -0.0966*
before score known (0.0617) (0.0587)
major No Yes No Yes
Observations 828 828 826 797

Note: Standard errors (in parentheses) are corrected for subject-level clustering effects,

*** n<0.01, ** p<0.05, * p<0.1. Coefficients report marginal effects at the mean levels.

Table 14 does not consider potential heterogeneous effects of personal attributes on behaviors.
For this, we focus on two cases we are most interested in: student 2 under the ability-wise design and
student 3 under the preference-wise design, both under the BOS-before mechanism. Table 15 reports
these results for these critical students of interest. Once again, almost all the variables are
insignificant including most of the risk attitude variables, demographic variables and college
entrance experience variables. Only age and CEE participation variable are significant under the
preference-wise design, and A is significant in one regression under ability-wise design.

Table 15: Determinants of truth-telling of critical players under BOS-before
Mechanism: Probit Model

explained var.: truth-telling
student 2 under student 3 under
ability-wise design preference-wise

explanatory variables

design
0 -0.117 -0.187 -0.0238  0.00468
(0.184)  (0.198) (0.217)  (0.209)
o -0.0415 -0.00560 0.182 0.160
(0.236)  (0.260) (0.244)  (0.266)
A 0.0308  0.0442* -0.00586 0.00781
(0.0215) (0.0235) (0.0235) (0.0259)
Joint sig. of risk 0435  0.188 0.863  0.924
parameters (prob.>F)
female 0.173 -0.0704
(0.155) (0.162)
age -0.121 -0.139*
(0.0909) (0.0814)
grade 0.0582 0.115
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(0.130) (0.112)

exam taken? -0.186 0.312**
(0.164) (0.132)
partial parallel -0.253 0.0850
(0.248) (0.258)
complete parallel -0.363 0.194
(0.233) (0.238)
submit before exam -0.159 0.0106
(0.184) (0.231)
submit after exam -0.132 -0.223
but before score
known (0.219) (0.185)
major No Yes No Yes
Observations 75 75 64 62

Note: Standard errors (in parentheses) are corrected for subject-level clustering
effects, *** p<0.01, ** p<0.05, * p<0.1. Coefficients report marginal effects at the
mean levels.

So why might subjects not play the Nash equilibrium strategy? One of the reasons not included
in our regression is the player’s calculation of expected payoffs based on objective score and ranking
distributions. Subjects may attempt to follow the expected payoff formula, but given the short time
period for decision making, they cannot calculate precisely these distributions and derive the
equilibrium. So among the two non-dominated strategies available to them, they may make mistakes.
Another possible explanation for non-equilibrium play is different levels of strategic sophistication
among subjects (see Camerer, Ho and Chong, 2004; Crawford, Costa-Gomes, Iriberri, forthcoming),
wherein subjects may assume that other subjects are less sophisticated than they are with some
probability.?*

5. Conclusions

In this paper we conduct a series of laboratory experiments on the Boston and Serial
Dictatorship mechanisms which vary by the timing of students’ required preference submissions over
schools. Our focus on preference submission timing is inspired by the heterogeneity in matching
mechanisms implemented in China’s college admission system over years of reform. We are further
motivated by the insight that the Boston mechanism with preference submission timing before the
realization of an ‘exam’ score, may have superior ex-ante fairness and efficiency properties over the
frequently theoretically preferred Serial Dictatorship mechanism.

Our experiments confirm that students’ behavior is indeed affected by the incentives introduced
by preference submission timing variation, thus influencing efficiency and fairness results. Overall,

2 For example, in the case of BOS before, student 2 may believe that student 3 lists school C as her first choice, due to having the
lowest ex-ante expected score, even though student 3 has no incentive to do so. In this case, student 2 may choose to gamble with
student 1 for school A, believing that her fallback option is school B in a later round, after student 3 is matched successfully to school
C.
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our experiments confirmed our prediction more strongly in the case of ex-ante efficiency compared
to ex-ante fairness. A detailed examination of our data reveals that the fairness result was especially
sensitive to the conformity of the second highest ranked student to equilibrium play. When this
student chose to ‘compete’ with the top ranked student over the top school by revealing her true
preference over schools, the likelihood of a completely ex-ante fair matching was just 12 percent, as
compared to 63 percent in the case of equilibrium play.

Surprisingly, risk attitudes did not have any significant predictive power in explaining subjects’
propensity to truth-tell. We find little evidence that risk aversion, demographic characteristics or
prior personal experience with school choice matching play a significant role in students’ strategy
choices. More work is needed in order to pin down the determinants of equilibrium and truth-telling
play, and this may indeed have policy consequences for the fairness viability of BOS-before as an
ex-ante screening mechanism in school choice settings.

Another direction for future research is a formal theoretical model to determine more generally
when existing school choice mechanisms of interest are superior or inferior once preference
submission timing as a design characteristic is introduced. Our current experiment specified a fixed
set of payoffs, and checked whether subjects behaved as predicted by risk neutral valuation of these
payoffs. A more rigorous model could reveal not only what payoff structures support higher
efficiency and fairness, but also analyze a more general matching environment than the 3-school, 3
student environment we consider here.

Finally, we would like to mention some policy implications about our results in the context of
China’s college admission system. A prevalent criticism of the current system is that it places too
much weight on a single exam’s result, which not only places substantial pressures on high school
students, but also requires teachers to spend non-trivial amounts of time ‘teaching to the test’. The
benefit of the test-based admissions system however, is its objective rewarding of academic merit, as
measured by ability and effort on the exam and preparations leading up to it. This incentive system
may be crucial for families’ relatively high regard for education in China.

Since the exam-based system indeed has its benefits as well as its drawbacks, it may be less
realistic to consider drastic reforms toward the CEE-based system, and more realistic to consider the
effects of relatively small changes in mechanism design such as the preference submission timing we
have considered here.
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Appendix 1: Equilibrium Calculation for BOS-before mechanism under ability-wise design

Given the score distribution of all the three students (uniformly distributed over high, normal and
low scores), the score-rank distribution is the following:

Ranking of students by score Probability of occurrence
(1,2,3) 10/27
(1,3,2) 7127
(2,1,3) 7127
(2,3,1) 1/27
(3,1,2) 1/27
(3,2,1) 1/27

Consider the first choice school of each of the three students. Note that in equilibrium each of
the students must be admitted to one of the three schools. We show that all Nash equilibria of the
game must have student 1 listing A as her first choice and students 2 and 3 listing B as their first
choice.

Claim 1: There in no equilibrium where some student chooses school C as her first choice.

Proof: Note that every student has a positive probability of being ranked first. Thus, by listing C as
her first choice, is strictly dominated in expectation, compared to listing either B or A as her first
choice.

Claim 2: There is no equilibrium where all three students choose school A as their first choice.

Proof: Suppose that there is an equilibrium where students 1, 2 and 3, each choose school A as their
first choice. All students will then have incentive to choose school B, instead of C, as their second
choice, in order to maximize their expected payoffs. Consider the expected payoff of student 3 in this
case: 30*2/27+ 25*8/27+15*17/27 = 515/27, whereas by choosing B as her first choice, her expected
payoff is 25 with certainty, which is greater than 515/27.

Claim 3: In any equilibrium, at least one student chooses school A as her first choice.

Proof: Suppose there is an equilibrium where no students choose school A as their first choice. Then
for student i (i=1,2,3), her payoff would be 30 for sure if she choose school A as her first choice
instead of playing the equilibrium strategy, which yields an expected payoff strictly less than 30.

Claim 4: In any equilibrium, student 1 chooses school A as her first choice.

Proof: Suppose there is an equilibrium where student 1 does not choose school A as her first choice.
Then by Claim 1, she must choose school B as her first choice. By Claim 3, there are in total three
cases.
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Case 1. Both of the other two students choose school A as their first choice. Then student 1 will
get 25 by choosing school B as her first choice. But if she chooses school A as her first choice and
school B as her second choice, she will get in expectation: 30*17/27+25*8/27+15*2/27=740/27>25.

Case 2. Student 2 chooses school A as her first choice while student 3 chooses school B as her
first choice. Then by choosing school B as her first choice, student 1’s expected payoff is:
25*24/27+15*3/27=215/9. By choosing school A as her first choice, student 1’s expected payoff is:
30*18/27+15*9/27=25>215/9.

Case 3. Student 3 chooses school A as her first choice, while student 2 chooses school B as her
first choice. Then by choosing school B as her first choice, student 1’s expected payoff is:
25*18/27+15*9/27=65/3. By choosing school A as her first choice, student 1’s expected payoff is:
30*24/27+15*3/27=85/3>65/3.

So in any of the three possible cases, student 1 prefers choosing school A as her first choice.
Claim 5: In any equilibrium, student 2 chooses school B as her first choice.
Proof: Suppose there is an equilibrium where student 2 chooses school A as her first choice.

Then in equilibrium, student 3 must choose school B as her first choice by Claim 3 and Claim 4.
Then student 2’s expected payoff is: 30*9/27+15*18/27=20. But if student 2 chooses school B as her
first choice, her expected payoff is 25*18/27+15*9/27=65/3, which is greater than 20.

Claim 6: In any equilibrium, student 3 chooses school B as her first choice.

Proof: By Claims 4 and 5, in equilibrium student 1 chooses school A as her first choice, and student
2 chooses school B as her first choice. Given this, if student 3 chooses school A as her first choice,
her payoff is: 30*3/27+15*24/27=50/3. If she chooses school B as her first choice, her payoff is:
25*9/27+15*18/27=55/3>50/3.

Given the first choices of all the three students in equilibrium, the resulting outcome is that
student 1 is admitted to school A, student 2 is admitted to either school B or C, depending on her
score relative to student 3. Student 3 goes to the remaining school. Their second or third choices do
not affect the matching result, so those choices can be arbitrary. It is easy to verify that such choice
profiles constitute a Nash equilibrium.
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Appendix 2. Equilibrium Calculation for BOS-before mechanism under preference-wise design

As we assume, each student has the same ability. Thus each of them has the same score
distribution which implies an equal probability of getting into each of the three schools.

Claim 7: There is no equilibrium where all three students choose school A as their first choice.

Proof: Suppose that there is an equilibrium where students 1, 2 and 3, each choose school A as their
first choice. All students will then have incentive to choose school B, instead of C, as their second
choice, in order to maximize their expected payoffs. Consider the expected payoff of student 3 in this
case: 25*1/3+ 22*1/3+18*1/3= 65/3, whereas by choosing B as her first choice, her expected payoff
is 22 with certainty, which is greater than 65/3.

Claim 8: In any equilibrium, at least one student chooses school A as her first choice.

Proof: Suppose there is an equilibrium where no students choose school A as their first choice. Then
for student i (i=1,2,3), her payoff would be u*(i)=31 (i=1,2) or u*(i)=25 (i=3) for sure if she choose
school A as her first choice instead of playing the equilibrium strategy, which yields an expected
payoff strictly less than u*(i).

Claim 9: In any equilibrium, both students 1 and 2 choose school A as their first choice.

Proof: Consider student i, i=1,2. Suppose there exists an equilibrium where student i does not choose
school A as her top choice. Then by Claim 8, at least one of the other two students would choose
school A as their first choice, so student i’s highest possible payoff will be 22. If she deviates by
choosing school A as her first choice, her expected payoff will be at least 31*(1/3)+18*(2/3)=67/3,
which is greater than 22. So such an equilibrium cannot exist.

Claim 10: In any equilibrium, student 3 chooses school B as her first choice.

Proof: By Claim 7 and Claim 9, in equilibrium student 3’s first choice must be either school B or
school C. In either case student 3 will be admitted to her first choice school with certainty.
Comparing the payoffs (22 v.s. 18), student 3 must choose school B as her first choice.

Claim 11: In any equilibrium, both students 1 and 2 choose school B as their second choice.

Proof: Consider student i, i=1,2. Suppose there exists an equilibrium where student i does not choose
school B as her second choice. Then by Claim 9 and Claim 10, it must be the following case: student
i’s strategy is (A,C,B); student 3’s first choice is school B; the other student (denoted by j)’s first
choice is school A. Thus student 3’s payoff is 22. However, if student 3 deviates by playing (A,B,C),
her expected payoff will be either 25*1/3+22*1/2+18*1/6=67/3 (when student j’s strategy is (A,B,C))
or 25*1/3+22*2/3=23 (when student j’s strategy is (A,C,B)). In either case, her payoff will be greater
than 22. So such an equilibrium cannot exist.

Therefore students 1 and 2’s equilibrium strategy is (A, B, C). Given this, student 3’s second
choice and third choice do not matter. That is, student 3’s strategy is (B, *, *), where “*” represents
any school not yet listed. It is easy to verify such choice profiles form a Nash equilibrium. In
equilibrium, both student 1 and 2 have an equal probability of getting into school A and C. Student 3
will get into school B for sure.
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Appendix 3. Experimental Instruction Manual

Instruction-Mechanism B-a-1

Thank you for participating in this experiment on decision making. From now until the end of the session
any communication with other participants is forbidden. If you have any question, feel free to ask at any point
of the experiment. Please do so by raising your hand and one of us will come to your desk to answer your
guestion. The experiment will be conducted in two phases. We will only explain phase 1 now. After we finish
phase 1, we will explain phase 2.

In this experiment we simulate two procedures to allocate students to schools. For each procedure, there
are 3 independent rounds of games to play with. So the whole experiment will have totally 6 rounds. In each
round, we will form groups of three participants, so that you will be grouped with 2 other participants, whose
identity you will not know. You will play one of three roles of students, namely student 1, 2 or 3, and the other
2 players will play the remained roles respectively. You will play all the three roles of student 1, 2 and 3 one
by one in the 3 consecutive rounds for each procedure. The sequence is assigned randomly. Note that groups
will be reformed after each round.

In each round, all the participants have to indicate a preference ordering over schools. There are three
schools (A, B, and C) and every school has one slot available. Each slot will be allocated to a participant,
based on the preference ordering submitted by the 3 participants of the group, and also a score ranking
assigned to each of the 3 participants. Schools differ in quality, and the desirability of schools in terms of
quality is summarized in the amounts shown in the payoff table (see Decision Sheets), which contains the
payoff amounts in experimental currency units (ECU) corresponding to each participant and school slot. This
matrix is known by all the participants.

Submitted school ranking. In each round during the experiment, you will be asked to complete the Decision
Sheet by indicating the preference ordering over schools you wish to submit. You have to rank every school.

Score Assignment and ranking. Schools build a priority ordering when offering slots where all candidates
are ranked. The rankings are solely determined by score rankings of all candidates. All the three schools give
the student with the highest score rank the highest priority, the second highest score the second highest priority,
and the third highest (or the lowest) score the third highest (or lowest) priority. Score rankings are determined
by score numbers all the participants have. The rules of score assignment and ranking are described below:

Each student will have a score number. Score numbers of all the participants will determine score rankings.
Students who have the highest score will be ranked no. 1, the second highest no. 2, and the third highest (or
the lowest) no. 3.

Each student will have an equal probability of getting three types of scores (namely high, normal, and low),
where 100 represents full marks. However, those three scores are different for each of the three participants.
The following table contains the score distribution of each student (this is known by all participants):

Score nhumber Score 1 Score 2 Score 3

(high) (normal) (low) Avg. score
Probability 1/3 1/3 1/3
Student 1 95 90 85 90
Student 2 91 86 81 86
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Student 3 87 82 77 82

It can be seen from the table above that student 1 has an average score higher than 2, and 2 higher than 3.
However, when student 1 has a normal score and 2 has a high score, 2 will have a higher score than 1 thus
rank ahead of 1. The similar event happens between student 2 and 3. Furthermore, if student 1 has a low score
and student 3 has a high score, even student 3 will surpass 1.

Every student’s exact score number will be drawn randomly and independently from the distribution
stated in the table above. Their score rankings are determined by their exact scores.

Payoffs. During the session you can earn money. You will receive 20 ECU for your participation, in addition
to the amount you earn in the experiment. The amount for each student in each round is displayed in the
payoff matrix, corresponding to the slot you hold at the end of each round. Note that the slot you hold at the
end of each round depends on your submitted ordering and the submitted ordering of the other participants of
your group (which you will not know at the moment of submitting your order).

The total payoff you earn is the sum of payoffs you earn in each of the 6 rounds, plus the 20 ECU
participation fee. Once the whole experiment has finished and all the 6 allocations (corresponding to the 6
games) of the participants are determined, each participant will get paid her total payoff in YMB. One ECU
equals to 0.5 yuan YMB.

Allocation Procedures. You will experience two different procedures of allocating students to schools in this
experiment. With each of those two procedures and in each round, each participant is assigned a slot at the
best possible school reported in her Decision Sheet that is consistent with the priority ordering of schools, the
ordering being solely determined by score rankings among all the participants. The two procedures you will
experience, however, differ in one aspect: whether you only know the distribution of score numbers of all the
students, or you know their exact score numbers of all the students when you submit your preference over
schools. The detailed process of each procedure is the following:

Procedure 1 (pre-score submission):
Step 1 and 2 concerns preference submission and score assignment and ranking:
e  Step 1. Each student will submit their preferences over all the 3 schools in the Decision Sheet.
e  Step 2. Each student will be assigned a score number and all the scores will be ranked.
Step 3-6 is the process used to allocate students to schools:
e  Step 3. An application to the first ranked school in the Decision sheet is sent for each participant.

e Step 4. Each school accepts the applicant with the highest score ranking. The applicant and her position is
removed from the system. All the other applicants (if any) are rejected by the schools.

e Step 5. The applicants remaining in the system have their applicants sent to their second ranked slot in the
Decision Sheet. If a school’s slot is still available, then it accepts the applicant with the highest score
ranking. The remaining applications are rejects.

e  Step 6. Each remaining participant is assigned a slot at her last choice.
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An example. We will go through a simple example to illustrate how this allocation procedure works.

Step 1. Submitted school ranking: Suppose the submitted school rankings of each participant are the
following.

Student 1 Student 2 Student 3
1st choice A A A
2nd choice B B B
3rd choice C C C

Step 2. Score assignment and ranking: Suppose after three lotteries being drawn randomly and
independently for each participant, students have scores and therefore ranks as:

Student/Applicant 1 2 3
Score 95 91 87
Rank 1 2 3

Step 3-6. Allocation. The allocation procedure consists of the following steps:
Step 3: Each applicant applies to her first choice:
— Applicant 1, 2, 3 apply all to school A.
Step 4: Each school accepts the applicant with the highest score ranking and rejects others:
— School A retains applicant 1 and reject applicant 2 and 3.
— Applicant 1 and school A are removed from the subsequent process.
Step 5: Each applicant who is rejected in round 1 applies to her second choice:
— Applicants 2 and 3 apply to school B.
— School B accepts applicant 2 and rejects applicant 3.
— Applicant 2 and school B are removed from the subsequent process.
Step 6: Each remaining participant is assigned her last choice.
—  Applicant 3 gets the remaining slot in school C.
Here the process finishes; and the final allocations are the following.

w

Student/Applicant 1 2

School A B C

Procedure 2 (post-score submission):

e  Step 1. Each student will be assigned a score number and all the sores will be ranked.
e  Step 2. Each student will submit their preferences over all the 3 schools in the Decision Sheet.
e  Step 3-6. All these steps are the same as in procedure 1.

Note that the only difference between procedure 1 and 2 is that the sequence of preference submission and
score assignment (steps 1 and 2) are reversed.

Now you can go over the instructions at your place. Then we will go through 3 rounds of decisions of
procedure 1, in which you will play the role of student 1, 2 and 3 in turn. We will end decisions of procedure 1
in 20-25 minutes. Then we will turn uniformly to 3 rounds of decision of procedure 2. The whole phase 1 of
the experiment will end in 30-35 minutes, then we move to phase 2. Your total payoff will be informed at the
end of the whole experiment.

Are there any questions?
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Decision Sheet — Mechanism B-a-1

(Procedure 1: submission before score is known)

Recall: You will submit your preference ordering without knowing the exact score but only its distribution.
Note that all the other participants know the distribution, meaning that every student knows every student’s
distribution of possible scores.

The score distribution of all the students is as the table below:

Score number Score 1 Score 2 Score 3
(high) (normal) (low)
Probability 1/3 1/3 1/3
Student 1 95 90 85
Student 2 91 86 81
Student 3 87 82 77

Your payoff amount for each role you play in each procedure depends on the school slot you hold at the
end of it. Your possible payoff amounts in each round are shown in the following table.

Slot received at school A B C
Your payoff(ECU) 30 25 15
This means, that if at the end of one game you hold a slot:
— atschool A, you will be paid 30 ECU for this round;
— at school B, you will be paid 25 ECU for this round;
— atschool C, you will be paid 15 ECU for this round.
Recall: There is only one slot opening at each school.
Recall: You will be asked to play the role of student 1, 2, 3 alternately. The sequence of role play will be
determine by lottery.
Decision 1

You are playing the role of student _ (1, 2, or 3 - will be shown on your screen) in this pre-score
submission game. Please submit your ranking of the schools (A through C) from your first choice to your last
choice. Please be sure to rank EVERY school!

1st choice 2nd choice 3rd choice

Decision 2

You are playing the role of student _ (1, 2, or 3; will be shown on your screen) in this pre-score
submission game. Please submit your ranking of the schools (A through C) from your first choice to your last
choice. Please be sure to rank EVERY school!

1st choice 2nd choice 3rd choice
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Decision 3

You are playing the role of student _ (1, 2, or 3; will be shown on your screen) in this pre-score
submission game. Please submit your ranking of the schools (A through C) from your first choice to your last
choice. Please be sure to rank EVERY school!

1st choice 2nd choice 3rd choice

Decision Sheet — Mechanism B-a-1

(Procedure 2: submission after score is known)

Recall: You will submit your preference ordering after you know not only your own exact score, but all
the others’ scores.

Your payoff amount for each role you play in each procedure depends on the school slot you hold at the
end of it. Your possible payoff amounts in each round are shown in the following table.

Slot received at school A B C
Your payoff(ECU) 30 25 15
This means, that if at the end of one game you hold a slot:
— atschool A, you will be paid 30 ECU for this round;
— at school B, you will be paid 25 ECU for this round;
— at school C, you will be paid 15 ECU for this round.
Recall: There is only one slot opening at each school.
Recall: You will be asked to play the role of student 1, 2, 3 alternately. The sequence of role play will be
determine by lottery.
Decision 4
Now you play the role of student _ (1, 2, or 3; will be shown on your screen).
Every student’s exact score is assigned as:
— Student 1: __ (95/90/85 - will be shown on your screen)
— Student 2: __ (91/86/81 - will be shown on your screen)
— Student 3: __ (87/82/77 - will be show on your screen)
Please submit your ranking of the schools (A through C) from your first choice to your last choice.
Please be sure to rank EVERY school!

1st choice 2nd choice 3rd choice

Decision 5
Now you play the role of student _ (1, 2, or 3; will be shown on your screen).
Every student’s exact score is assigned as:
— Student 1: __ (95/90/85 - will be shown on your screen)
— Student 2: __ (91/86/81 - will be shown on your screen)
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— Student 3: __ (87/82/77 - will be show on your screen)
Please submit your ranking of the schools (A through C) from your first choice to your last choice.

Please be sure to rank EVERY school!

1st choice 2nd choice 3rd choice

Decision 6

Now you play the role of student _ (1, 2, or 3; will be shown on your screen).

Every student’s exact score is assigned as:

— Student 1: __ (95/90/85 - will be shown on your screen)

— Student 2: __ (91/86/81 - will be shown on your screen)

— Student 3: __ (87/82/77 - will be show on your screen)

Please submit your ranking of the schools (A through C) from your first choice to your last choice.
Please be sure to rank EVERY school!

1st choice 2nd choice 3rd choice

This is the end of phase 1 of the experiment. Please remain sitting in your seat until all the other
participants finish. Then we will explain and conduct phase 2 of the experiment.
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Personal Background and Risk-Attitude Test Form

1. Your name is: ;student ID is: _ ; subject number is:

2. Your gender is (F/IM).

3. Yourage is

4. You major is .

5. Have you ever taken college entrance exam? (Y/N)____ . If so, in what province and which

year?
graduate from high school.
6. The following is a risk attitude test form. Please continue.

NOTE: To pay for doing this risk attitude test form, We will randomly choose one participant in each
experimental session. Then for the chosen participant we will randomly choose one row among all the 35
rows in three tables below. The chosen participant would be paid according to her lottery chosen at that row.
The lottery would be drawn publicly on the spot. 1ECU=0.5 yuan RMB. Good Luck!

You are going to choose from two lotteries, A and B, whose outcome (amounts in ECU you would win)
will be determined by a random draw of 10 balls in a cage, with the balls being numbered 1, 2, 3,....10. For
Table 1, at which row of lottery pairs would you begin to accept the Lottery B over Lottery A?

. If not, please indicate the province your high school is in, and the year you

Table 1
Row Lottery A Lottery B
Ball 1-3 Ball 4-10 Ball 1 Ball 2-10

1 40 10 68 5
2 40 10 75 5
3 40 10 83 5
4 40 10 93 5
5 40 10 106 5
6 40 10 125 5
7 40 10 150 5
8 40 10 185 5
9 40 10 220 5
10 40 10 300 5
11 40 10 400 5
12 40 10 600 5
13 40 10 1,000 5
14 40 10 1,700 5

Your answer is in table 1:

I choose Lottery AforRow 1to _ , and Lottery BforRow __ to 14.

you begin to accept the Lottery D over Lottery C?

Now consider another pair of Lotteries, C and D. Now for Table 2, at which row of lottery pairs would

Table 2
Row Lottery C Lottery D
Ball 1-9 Ball 10 Ball 1-7 Ball 8-10
1 40 30 54 5
2 40 30 56 5
3 40 30 58 5
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4 40 30 60 5
5 40 30 62 5
6 40 30 65 5
7 40 30 68 5
8 40 30 72 5
9 40 30 77 5
10 40 30 83 5
11 40 30 90 5
12 40 30 100 5
13 40 30 110 5
14 40 30 130 5

Your answer is in table 2:

I choose Lottery C forRow 1to _ , and Lottery D for Row __ to 14.

Consider the final pair of Lotteries, E and F. Now for Table 3, at which row of lottery pairs would you
begin to accept the Lottery F over Lottery E? (Note: Negative income implies money you are going to lose.)

Table 3
Row Lottery E Lottery F
Ball 1-5 Ball 6-10 Ball 1-5 Ball 6-10
1 25 -4 30 -21
2 4 -4 30 -21
3 1 -4 30 -21
4 1 -4 30 -16
5 1 -8 30 -16
6 1 -8 30 -14
7 1 -8 30 -11

Your answer is in table 3:
I choose Lottery E for Row 1 to , and Lottery F for Row to 14.

39



Instruction-Mechanism S-a-1

Step 3-5 is the process used to allocate students to schools:

e  Step 3. The student with the highest score among all the three has its application sent to her first ranked
school in the Decision sheet. She will be accepted by the school, and the applicant and her position is
removed from the system.

e  Step 4. The student with the second highest score has its application sent to her first ranked school in the
Decision sheet.
v'If the school’s slot is still available, it accepts the applicant. The applicant and her position is

removed from the system.

v If the school’s slot is not available, the student is rejected by the school and its application is sent to
her second ranked school. She will be accepted by the school, and the applicant and her position is
removed from the system.

e Step 5. The applicant with the lowest score has its applicant sent to her first ranked school in the Decision
sheet.

v If the school’s slot is still available, it accepts the applicant.

v If the school’s slot is not available, the student is rejected by the school and its application is sent to
her second ranked school.

o |f the school’s slot is still available, it accepts the applicant.
o |f the school’s slot is not available, the student is rejected by the school and its application is sent
to her third ranked school. She will be accepted by the school.

An example. ......
Step 3. The student with the highest score among all the three has its application sent to her first ranked
school in the Decision sheet.
e  Student 1 applies for school A.
e School A retains student 1. Student 1 and school A are removed from the subsequent process.
Step 4. The student with the second highest score has its application sent to her first ranked school (and
second ranked school, and so on...... if needed) in the Decision sheet.
e  Student 2 applies to school A.
e School A has no slots available thus rejects student 2. Student 2’s application is sent to her second ranked
school, school B.
e School B retains student 2. Student 2 and school B are removed from the system.
Step 5. The applicant with the lowest score has its applicant sent to her first ranked school in the
Decision sheet.
e  Student 3 applies to school A.
e School A has no slots available thus rejects student 3. Student 3’s application is sent to her second ranked
school, school B.
e School B has no slots available thus rejects student 3. Student 3’s application is sent to her third ranked
school, school C.
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e School C retains student 3.

Here the process finishes; and the final allocations are the following.

Student/Applicant 1 2 3

School A B C

Instruction-Mechanism B-p-1
In each round, all the participants have to indicate a preference ordering over schools....... Schools differ
in quality, and students differ in their eagerness for different schools. So the desirability of schools for
students in terms of quality and eagerness is summarized in the amounts shown in the payoff table (see
Decision Sheets), which contains the payoff amounts in experimental currency units (ECU) corresponding to
each participant and school slot. ......

Each student will have an equal probability of getting three types of scores (namely high, normal, and
low), where 100 represents full marks. Those three scores are the same for each of the three participants, so
every student has the same average score. The following table contains the score distribution of each student
(this is known by all participants):

Score number Score 1 Score 2 Score 3

(high) (normal) (low) Avg. score
Probability 1/3 1/3 1/3
Student 1 95 90 85 90
Student 2 95 90 85 90
Student 3 95 90 85 90

Every student’s exact score number will be drawn through the following procedure: First, one number is
randomly picked from three numbers, 95, 90 and 85 and assigned as the score for a randomly chosen student
from student 1, 2, 3. Then Another number is picked from the remaining two numbers for another randomly
chosen student. And the single remaining student will be assigned the single remaining number. Note that
through this procedure no two students have the same score.

Decision Sheet — Mechanism B-p-1
(Procedure 1: submission before score is known)

Recall: You will submit your preference ordering without knowing the exact score but only its distribution.
Note that all the other participants know the distribution, meaning that every student knows every student’s
distribution of possible scores.

The score distribution of all the students is as the table below:

Score number Score 1 Score 2 Score 3
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(high) (normal) (low)

Probability 1/3 1/3 1/3
Student 1 95 90 85
Student 2 95 90 85
Student 3 95 90 85

Students’ exact scores will be drawn randomly without repetition from the above distribution.
Your payoff amount for each role you play in each procedure depends on the school slot you hold at the
end of it. Your possible payoff amounts in each round are shown in the following table.

Slot received at school A B C
Payoff of student 1 (ECU) 31 22 18
Payoff of student 2 (ECU) 31 22 18
Payoff of student 3 (ECU) 25 22 18

This means that, as student 1 and 2, if at the end of one round you hold a slot:
— atschool A, you will be paid 31 ECU for this round;
— at school B, you will be paid 22 ECU for this round;
— at school C, you will be paid 18 ECU for this round.
And as student 3, if at the end of one round you hold a slot:
— atschool A, you will be paid 25 ECU for this round;
— atschool B, you will be paid 22 ECU for this round;
— atschool C, you will be paid 18 ECU for this round.

Recall: There is only one slot opening at each school.
Recall: You will be asked to play the role of student 1, 2, 3 alternately. The sequence of role play will be
determine by lottery.
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Appendix 4: Supplementary Tables

Table Al: Ex-ante Blocking Pairs in Ability-wise Design

panel A: Average number of blocking-pairs under
different mechanisms
BOS-before BOS-after SD-before  SD-after
0.827 0.947 0.720 0.773
panel B: differences in numbers and p-values of
significance tests
before-after BOSb-BOSa BOSb-SDb  BOSb-SDa
-0.087 -0.120 0.107 0.053
(0.365) (0.449) (0.069) (0.518)
Note: p-values are derived from running OLS regression of
truth-telling dummies on mechanism/timing dummies within
timing/mechanism. Standard errors are corrected for clusters on

the session level.

Table A2: Ex-post Blocking Pairs in Ability-wise Design

panel A: Average number of blocking-pairs under
different mechanisms
BOS-before BOS-after SD-before  SD-after
0.613 0.027 0.147 0.013
panel B: differences in numbers and p-values of
significance tests
before-after BOSb-BOSa BOSb-SDb  BOSb-SDa
0.360 0.587 0.467 0.600
(0.032) (0.013) (0.029) (0.012)
Note: p-values are derived from running OLS regression of

truth-telling dummies on mechanism/timing dummies within
timing/mechanism. Standard errors are corrected for clusters on

the session level.
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Table A4: Ex-post Blocking Pairs in Preference-wise Design

panel A: Average number of blocking-pairs under
different mechanisms

BOS-before BOS-after SD-before  SD-after
0.458 0.069 0.027 0.013
panel B: differences in numbers and p-values of

significance tests

BOSb-BOSa SDb-SDa BOSb-SDb BOSa-SDa
0.389 0.013 0.432 0.056
(0.000) (0.365) (0.000) (0.044)

Note: p-values are derived from running OLS regression of

truth-telling dummies on mechanism/timing dummies within
timing/mechanism. Standard errors are corrected for clusters on
the session level.

Table A5: Ex-Post Efficiency: differences in total
profits and p-values of significance tests
BOSb-BOSa BOSb-SDb  BOSb-SDa  before-after

0.000 0.000 0.000 0.000
(1.000) (1.000) (1.000) (1.000)
0.000 0.375 0.000 -0.214
(1.000) (0.364) (1.000) (0.323)
0.000 0.000 0.000 0.000
(1.000) (1.000) (1.000) (1.000)
0.000 0.000 0.000 0.000
(1.000) (1.000) (1.000) (1.000)
4500 4500 4.039 1.414
(0.064) (0.064) (0.089) (0.331)
3.192 2.942 3.692 2.341
(0.015) (0.088) (0.003) (0.072)
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Appendix 5: Truth-Telling in Detail

Table A5 shows proportions of truth-telling behavior for each student role in the four
mechanisms under the ability-wise design (fairness test). For all the students, truth-telling is
relatively high under the two SD mechanisms between 60% and 90%. In the BOS mechanisms, for
student 1, truth-telling is very high (96%) under the BOS-before mechanism but decreases to only 52%
under the BOS-after mechanism. This is natural since for student 1, its ex-post score has a
probability of 17/27=63% of being ranked first. This is the only case where she should tell the truth.
In the case of student 2, under the BOS-before mechanism, almost half of subjects (45%) try to
compete with student 1 by truth-telling, rather than listing school B first. This accounts for why our
aggregate ex-ante fairness result does not strongly support hypothesis 1. The propensity to truth-tell
is approximately the same as when student 2 submits after exam (under BOS-after), where she has a
probability of 8/27=30% to be ranked first. For student 3, truth-telling is relatively low, particularly
in BOS-before - likely because subjects acknowledge the strategic disadvantage of doing so.

Table A5: Truth-telling under Ability-wise Design

panel A: proportions of truth-telling under different mechanisms
student type BOS-before BOS-after SD-before  SD-after

type 1 0.960 0.520 0.960 0.893
type 2 0.453 0.453 0.773 0.680
type 3 0.133 0.200 0.600 0.587

panel B: differences in proportions and p-values of significance tests
studenttype =~ BOSb-BOSa SDb-SDa BOSb-SDb BOSa-SDa

type 1 0.440 0.067 0.000 -0.373
(0.000) (0.096)  (1.000) (0.000)
type 2 0.000 0.093 -0.320 -0.227
(1.000) (0.143)  (0.000) (0.005)
type 3 -0.067 0.013 -0.467 -0.387

(0.252) (0.820)  (0.000) (0.000)

Note: p-values are derived from running probit regression of truth-telling dummies

on mechanism/timing dummies within timing/mechanism Standard errors are
corrected for clusters on the subject level.

Table A6 shows proportions of truth-telling behavior for each student role under preference-wise
design (efficiency test). As in the ability-wise design, for all types of students, truth-telling is higher
under the two SD mechanisms. Under the BOS-before mechanism, students 1 and 2 have a high
proportion of truth-telling which is close to that under SD mechanisms. Since probability of being
ranked first for each type of student is 1/3, it is easy to understand that under the BOS-after
mechanism, each type has a proportion of truth-telling close to this probability (here around 40%).
We are especially interested in the truth-telling behavior of student 3 under BOS-before mechanism.
Although in theory, student 3 should not submit school A as their first choice, in the experiment 32%
of subjects do so.
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Table A6: Truth-telling under Preference-wise Design

panel A: proportions of truth-telling under different mechanisms
student type BOS-before BOS-after SD-before  SD-after
type 1&2 0.875 0.410 0.960 0.860
type 3 0.319 0.458 0.880 0.853
panel B: differences in proportions and p-values of significance tests
studenttype =~ BOSb-BOSa SDb-SDa BOSb-SDb BOSa-SDa

type 1&2 0.465 0.100 -0.085 -0.450
(0.000) (0.001)  (0.007) (0.000)
type 3 -0.139 0.027 -0.561 -0.395

(0.076) (0.619)  (0.000) (0.000)

Note: p-values are derived from running probit regression of truth-telling dummies
on mechanism/timing dummies within timing/mechanism. Standard errors are
corrected for clusters on the subject level.

Under the submission-after-exam mechanisms, rational students should base their submission
only on their ex-post type, i.e., rankings of their realized scores. So we are interested in behaviors of
different ex-post type of students under such mechanisms.

Table A7 summarizes truth-telling behaviors of students with different realized scores under
ability-wise designs. Notably, the student with the second highest score is even less likely to list the
best school as its first choice than student with the lowest score. One reason is that the student with
the lowest score is indifferent between her two non-dominated strategies. But for student with the
second highest score, it is critical to list the second best school as her first choice to avoid getting
assigned to her last choice. Yet this explanation is only valid for BOS-after mechanism. But even
under SD-after mechanism, when truth-telling is the dominant strategy, almost half of students with
the second highest score still refuse to do so. Note that in the equilibrium it is still indifferent for this
student to play the two non-dominated strategies. So students with a slight inclination toward
fairness may lean toward choosing the second best school as her first choice.

Table A7: Truth-telling of students with different realized scores under submission-after-exam
mechanisms: Ability-wise Design

panel A: proportions of truth-telling
under BOS/SD-after mechanisms

student type BOS SD

high-score 0.987 1.000
medium-score 0.013 0.493
low-score 0.173 0.667

panel B: differences in proportions and
p-values of significance tests

student type BOS-SD

high-score -0.013
(0.316)

medium-score -0.480
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(0.000)
low-score -0.493
(0.000)

Note: p-values are derived from running

OLS/probit regression of truth-telling dummies
on mechanism/timing dummies within
timing/mechanism. Standard errors are
corrected for clusters on the subject level.

Table A8 examines the same issue under the preference-wise design. The finding is similar
except that student with the second highest score now chooses truth-telling more frequently than
under the ability-wise design. This may also be attributed to potential predispositions of fairness. In
this case, the three students have the same expected scores, so the one who turns out to have a lower
realized score may still feel she should submit as though her rights are equal to the others’.

Table A8: Truth-telling of students with different realized scores under submission-after-exam
mechanisms: Preference-wise Design

panel A: proportions of truth-telling
under BOS/SD-after mechanisms

student type BOS SD

high-score 0.958 0.987
medium-score 0.083 0.827
low score 0.236 0.760

panel B: differences in proportions and
p-values of significance tests

student type BOS-SD
high-score -0.028
(0.398)
medium-score -0.743
(0.000)
low-score -0.524
(0.000)

Note: p-values are derived from running
OLS/probit regression of truth-telling dummies
on mechanism/timing dummies within
timing/mechanism. Standard errors are
corrected for clusters on the subject level.
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Appendix 6: Robustness Checks for Order Effects

Recall that for each mechanism under each treatment, we conducted two sub-sessions, one with pre-score
preference submission and one with post-score preference submission, with the sequence altered in two

different sessions.

Table A10 shows the between-session effects for major indicators we are concerned about. For most of
those indicators, between-session effects are insignificant. There are only a few variables which significantly
differ between sessions and they are scattered into different mechanisms and treatments, meaning that on
average no single mechanism or treatment shows any consistent difference. For those which are significant,
our qualitative conclusions still remain. We conclude that our results are robust to treatment order effects.

Table A10: Between Session Effects
design mechanism  session1  session 2 dif p-value  sig. level
panel A: truth-telling
abi-wise BOS-before 0.481 0.547 0.066 0.328
BOS-after 0.343 0.436 0.093 0.153
SD-before 0.778 0.778 0.000 1.000
SD-after 0.735 0.704 -0.031 0.603
pref-wise BOS-before 0.667 0.713 -0.046 0.464
BOS-after 0.463 0.389 0.074 0.273
SD-before 0.899 0.960 -0.061 0.068 *
SD-after 0.838 0.873 0.035 0.463
Panel B: ex-ante fair
abi-wise BOS-before 0.417 0.385 0.032 0.781
BOS-after 0.389 0.205 0.184 0.083 *
SD-before 0.462 0.361 0.100 0.384
SD-after 0.231 0.417 -0.186 0.087 *
Panel C: ex-ante efficiency(total payoff)
pref-wise BOS-before 70.833 70.000 0.833 0.047 *x
BOS-after 68.833 69.000 -0.167 0.808
SD-before 69.727 68.857 0.870 0.175
SD-after 69.000 68.857 0.143 0.833
Panel D: ex-post fair
abi-wise BOS-before 0.278 0.513 -0.235 0.038 *x
BOS-after 0.972 1.000 -0.028 0.301
SD-before 0.795 0.917 -0.122 0.140
SD-after 1.000 0.972 0.028 0.301
pref-wise BOS-before 0.583 0.500 0.083 0.485
BOS-after 0.917 0.944 -0.028 0.649
SD-before 0.970 0.976 -0.006 0.865
SD-after 0.970 1.000 -0.030 0.262

Note: ***=sig. at 1% level, **=sig. at 5% level, *=sig. at 10% level.
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Appendix 7: Supplementary Figures:

Figure 3(a): Truth-telling under Ability-wise Design
(Means and 95% confidential intervals are shown)
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Figure 3(b): Truth-telling under Preference-wise Design
(Means and 95% confidential intervals are shown)
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Figure 5: Ex-post Fairness under Preference-wise Design
(Means and 95% confidential intervals are shown)
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